Step
*
of Lemma
rnexp-req
∀[k:ℕ]. ∀[x:ℝ]. (x^k = if (k =z 0) then r1 else x * x^k - 1 fi )
BY
{ (Auto
THEN AutoSplit
THEN Try ((HypSubst' (-1) 0 THEN RepUR ``rnexp`` 0 THEN Auto)⋅)
THEN (BLemma `req-iff-bdd-diff` THENA Auto)
THEN (RWO "rmul-bdd-diff-reg-seq-mul" 0 THENA Auto)
THEN Unfold `rnexp` 0
THEN Fold `reg-seq-nexp` 0
THEN (CallByValueReduce 0 THENA Auto)
THEN AutoSplit
THEN (CallByValueReduce 0 THENA Auto)
THEN AutoSplit) }
1
1. k : {1...}
2. k ≠ 0
3. x : ℝ
4. (k - 1) = 0 ∈ ℤ
⊢ bdd-diff(accelerate((k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1;reg-seq-nexp(x;k));reg-seq-mul(x;r1))
2
1. k : {1...}
2. k - 1 ≠ 0
3. k ≠ 0
4. x : ℝ
⊢ bdd-diff(accelerate((k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1;reg-seq-nexp(x;k));reg-seq-mul(x;accelerate(((k
- 1)
* ((canon-bnd(x)^k - 1 - 1 ÷ 2^k - 1 - 1) + 1))
+ 1;reg-seq-nexp(x;k - 1))))
Latex:
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[x:\mBbbR{}]. (x\^{}k = if (k =\msubz{} 0) then r1 else x * x\^{}k - 1 fi )
By
Latex:
(Auto
THEN AutoSplit
THEN Try ((HypSubst' (-1) 0 THEN RepUR ``rnexp`` 0 THEN Auto)\mcdot{})
THEN (BLemma `req-iff-bdd-diff` THENA Auto)
THEN (RWO "rmul-bdd-diff-reg-seq-mul" 0 THENA Auto)
THEN Unfold `rnexp` 0
THEN Fold `reg-seq-nexp` 0
THEN (CallByValueReduce 0 THENA Auto)
THEN AutoSplit
THEN (CallByValueReduce 0 THENA Auto)
THEN AutoSplit)
Home
Index