Step
*
2
of Lemma
rnexp-req
1. k : {1...}
2. k - 1 ≠ 0
3. k ≠ 0
4. x : ℝ
⊢ bdd-diff(accelerate((k * ((canon-bnd(x)^k - 1 ÷ 2^k - 1) + 1)) + 1;reg-seq-nexp(x;k));reg-seq-mul(x;accelerate(((k
- 1)
* ((canon-bnd(x)^k - 1 - 1 ÷ 2^k - 1 - 1) + 1))
+ 1;reg-seq-nexp(x;k - 1))))
BY
{ ((Assert ⌜k ≠ 1⌝⋅ THENA Auto)
THEN (CombineNequalWithLe THENA Auto)
THEN RepeatFor 2 (Thin (-2))
THEN (RWO "exp-fastexp<" 0 THENA Auto)) }
1
1. k : {2...}
2. x : ℝ
⊢ bdd-diff(accelerate((k * ((canon-bnd(x)^(k - 1) ÷ 2^(k - 1)) + 1)) + 1;reg-seq-nexp(x;k));
reg-seq-mul(x;accelerate(((k - 1) * ((canon-bnd(x)^(k - 1 - 1) ÷ 2^(k - 1 - 1)) + 1)) + 1;reg-seq-nexp(x;k
- 1))))
Latex:
Latex:
1. k : \{1...\}
2. k - 1 \mneq{} 0
3. k \mneq{} 0
4. x : \mBbbR{}
\mvdash{} bdd-diff(accelerate((k * ((canon-bnd(x)\^{}k - 1 \mdiv{} 2\^{}k - 1) + 1)) + 1;reg-seq-nexp(x;k));
reg-seq-mul(x;accelerate(((k - 1) * ((canon-bnd(x)\^{}k - 1 - 1 \mdiv{} 2\^{}k - 1 - 1) + 1))
+ 1;reg-seq-nexp(x;k - 1))))
By
Latex:
((Assert \mkleeneopen{}k \mneq{} 1\mkleeneclose{}\mcdot{} THENA Auto)
THEN (CombineNequalWithLe THENA Auto)
THEN RepeatFor 2 (Thin (-2))
THEN (RWO "exp-fastexp<" 0 THENA Auto))
Home
Index