Nuprl Lemma : square-req-iff
∀x,y:ℝ.  ((r0 ≤ x) ⇒ (r0 ≤ y) ⇒ (x = y ⇐⇒ x^2 = y^2))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rnexp: x^k1, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
prop: ℙ, 
rev_implies: P ⇐ Q, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
isEven: isEven(n), 
eq_int: (i =z j), 
modulus: a mod n, 
btrue: tt, 
nat: ℕ, 
le: A ≤ B, 
false: False, 
not: ¬A
Lemmas referenced : 
req_functionality, 
rabs_wf, 
rabs_functionality, 
req_weakening, 
req_wf, 
rnexp-req-iff-even, 
less_than_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
iff_wf, 
rleq_wf, 
int-to-real_wf, 
real_wf, 
rabs-of-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
productElimination, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (x  =  y  \mLeftarrow{}{}\mRightarrow{}  x\^{}2  =  y\^{}2))
Date html generated:
2016_10_26-AM-09_10_38
Last ObjectModification:
2016_10_01-AM-11_42_42
Theory : reals
Home
Index