Nuprl Lemma : rnexp-req-iff-even

n:ℕ+. ∀x,y:ℝ.  ((↑isEven(n))  (|x| |y| ⇐⇒ x^n y^n))


Proof




Definitions occuring in Statement :  rabs: |x| rnexp: x^k1 req: y real: isEven: isEven(n) nat_plus: + assert: b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat_plus: + iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} prop: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top rev_implies:  Q nat: le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) less_than: a < b squash: T true: True
Lemmas referenced :  rabs-of-nonneg rabs-rmul zero-rleq-rabs int-to-real_wf rleq_wf rnexp2 rnexp_functionality rnexp-mul req_inversion req_transitivity req_functionality false_wf rabs_wf iff_wf le_wf int_formula_prop_le_lemma intformle_wf decidable__le rnexp_wf req_wf square-nonneg rmul_wf less_than_wf int_formula_prop_wf int_term_value_mul_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMultiply_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rnexp-req-iff nat_plus_wf real_wf isEven_wf assert_wf int_subtype_base subtype_base_sq assert-isEven
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis productElimination independent_functionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry because_Cache addLevel independent_pairFormation impliesFunctionality dependent_set_memberEquality natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll introduction imageMemberEquality baseClosed allFunctionality promote_hyp

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.    ((\muparrow{}isEven(n))  {}\mRightarrow{}  (|x|  =  |y|  \mLeftarrow{}{}\mRightarrow{}  x\^{}n  =  y\^{}n))



Date html generated: 2016_05_18-AM-07_29_32
Last ObjectModification: 2016_01_17-AM-02_00_00

Theory : reals


Home Index