Nuprl Lemma : rnexp-req-iff-even
∀n:ℕ+. ∀x,y:ℝ.  ((↑isEven(n)) ⇒ (|x| = |y| ⇐⇒ x^n = y^n))
Proof
Definitions occuring in Statement : 
rabs: |x|, 
rnexp: x^k1, 
req: x = y, 
real: ℝ, 
isEven: isEven(n), 
nat_plus: ℕ+, 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
nat_plus: ℕ+, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
rev_implies: P ⇐ Q, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
uiff: uiff(P;Q), 
less_than: a < b, 
squash: ↓T, 
true: True
Lemmas referenced : 
rabs-of-nonneg, 
rabs-rmul, 
zero-rleq-rabs, 
int-to-real_wf, 
rleq_wf, 
rnexp2, 
rnexp_functionality, 
rnexp-mul, 
req_inversion, 
req_transitivity, 
req_functionality, 
false_wf, 
rabs_wf, 
iff_wf, 
le_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
rnexp_wf, 
req_wf, 
square-nonneg, 
rmul_wf, 
less_than_wf, 
int_formula_prop_wf, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermMultiply_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
rnexp-req-iff, 
nat_plus_wf, 
real_wf, 
isEven_wf, 
assert_wf, 
int_subtype_base, 
subtype_base_sq, 
assert-isEven
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
addLevel, 
independent_pairFormation, 
impliesFunctionality, 
dependent_set_memberEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
introduction, 
imageMemberEquality, 
baseClosed, 
allFunctionality, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.    ((\muparrow{}isEven(n))  {}\mRightarrow{}  (|x|  =  |y|  \mLeftarrow{}{}\mRightarrow{}  x\^{}n  =  y\^{}n))
Date html generated:
2016_05_18-AM-07_29_32
Last ObjectModification:
2016_01_17-AM-02_00_00
Theory : reals
Home
Index