Nuprl Lemma : assert-isEven

n:ℤ(↑isEven(n) ⇐⇒ ∃k:ℤ(n (2 k) ∈ ℤ))


Proof




Definitions occuring in Statement :  isEven: isEven(n) assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] false: False guard: {T} sq_type: SQType(T) uimplies: supposing a not: ¬A nequal: a ≠ b ∈  true: True int_nzero: -o or: P ∨ Q decidable: Dec(P) le: A ≤ B less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + nat: bfalse: ff ifthenelse: if then else fi  assert: b eq_int: (i =z j) top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) absval: |i| modulus: mod n isEven: isEven(n) int_lower: {...i} gt: i > j ge: i ≥  uiff: uiff(P;Q) subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  subtype_base_sq int_subtype_base modulus-equal-iff-eqmod decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than assert_of_eq_int modulus_wf nequal_wf mod2-2n add-is-int-iff multiply-is-int-iff itermMultiply_wf itermAdd_wf int_term_value_mul_lemma int_term_value_add_lemma false_wf rem_bounds_2 decidable__equal_int satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma rem_bounds_1 le_wf less_than_wf decidable__le div_rem_sum true_wf assert_wf isEven_wf exists_wf equal_wf
Rules used in proof :  natural_numberEquality multiplyEquality lambdaEquality sqequalRule intEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution voidElimination independent_functionElimination equalitySymmetry equalityTransitivity dependent_functionElimination independent_isectElimination cumulativity instantiate addLevel dependent_set_memberEquality unionElimination productElimination baseClosed imageMemberEquality introduction computeAll voidEquality isect_memberEquality int_eqEquality dependent_pairFormation imageElimination because_Cache sqleReflexivity callbyvalueReduce minusEquality closedConclusion baseApply promote_hyp rename pointwiseFunctionality divideEquality extract_by_obid Error :dependent_set_memberEquality_alt,  approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :lambdaFormation_alt,  Error :equalityIstype,  Error :inhabitedIsType,  sqequalBase applyEquality

Latex:
\mforall{}n:\mBbbZ{}.  (\muparrow{}isEven(n)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}k:\mBbbZ{}.  (n  =  (2  *  k)))



Date html generated: 2019_06_20-PM-02_24_42
Last ObjectModification: 2019_05_02-PM-06_05_44

Theory : num_thy_1


Home Index