Nuprl Lemma : assert-isEven
∀n:ℤ. (↑isEven(n) ⇐⇒ ∃k:ℤ. (n = (2 * k) ∈ ℤ))
Proof
Definitions occuring in Statement : 
isEven: isEven(n), 
assert: ↑b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
multiply: n * m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
false: False, 
guard: {T}, 
sq_type: SQType(T), 
uimplies: b supposing a, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
true: True, 
int_nzero: ℤ-o, 
or: P ∨ Q, 
decidable: Dec(P), 
le: A ≤ B, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
nat_plus: ℕ+, 
nat: ℕ, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
eq_int: (i =z j), 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
absval: |i|, 
modulus: a mod n, 
isEven: isEven(n), 
int_lower: {...i}, 
gt: i > j, 
ge: i ≥ j , 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
modulus-equal-iff-eqmod, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
assert_of_eq_int, 
modulus_wf, 
nequal_wf, 
mod2-2n, 
add-is-int-iff, 
multiply-is-int-iff, 
itermMultiply_wf, 
itermAdd_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
false_wf, 
rem_bounds_2, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
rem_bounds_1, 
le_wf, 
less_than_wf, 
decidable__le, 
div_rem_sum, 
true_wf, 
assert_wf, 
isEven_wf, 
exists_wf, 
equal_wf
Rules used in proof : 
natural_numberEquality, 
multiplyEquality, 
lambdaEquality, 
sqequalRule, 
intEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidElimination, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
independent_isectElimination, 
cumulativity, 
instantiate, 
addLevel, 
dependent_set_memberEquality, 
unionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
computeAll, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
imageElimination, 
because_Cache, 
sqleReflexivity, 
callbyvalueReduce, 
minusEquality, 
closedConclusion, 
baseApply, 
promote_hyp, 
rename, 
pointwiseFunctionality, 
divideEquality, 
extract_by_obid, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
Error :inhabitedIsType, 
sqequalBase, 
applyEquality
Latex:
\mforall{}n:\mBbbZ{}.  (\muparrow{}isEven(n)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}k:\mBbbZ{}.  (n  =  (2  *  k)))
Date html generated:
2019_06_20-PM-02_24_42
Last ObjectModification:
2019_05_02-PM-06_05_44
Theory : num_thy_1
Home
Index