Nuprl Lemma : square-nonneg

[x:ℝ]. (r0 ≤ (x x))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uiff: uiff(P;Q) top: Top req_int_terms: t1 ≡ t2 itermConstant: "const" uimplies: supposing a rnonneg2: rnonneg2(x) reg-seq-mul: reg-seq-mul(x;y) rev_implies:  Q iff: ⇐⇒ Q prop: real: subtype_rel: A ⊆B false: False implies:  Q not: ¬A and: P ∧ Q le: A ≤ B all: x:A. B[x] rnonneg: rnonneg(x) rleq: x ≤ y member: t ∈ T uall: [x:A]. B[x] ge: i ≥  rev_uimplies: rev_uimplies(P;Q) or: P ∨ Q decidable: Dec(P) nat: so_apply: x[s] satisfiable_int_formula: satisfiable_int_formula(fmla) nequal: a ≠ b ∈  guard: {T} int_upper: {i...} so_lambda: λ2x.t[x] true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + exists: x:A. B[x]
Lemmas referenced :  rmul-bdd-diff-reg-seq-mul rnonneg2_functionality req_weakening rmul-identity1 rmul_functionality req-iff-rsub-is-0 real_term_value_var_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_term_value_const_lemma itermConstant_wf itermVar_wf itermMultiply_wf itermSubtract_wf real_term_polynomial req_transitivity rnonneg_functionality reg-seq-mul_wf rnonneg-iff nat_plus_wf real_wf int-to-real_wf rmul_wf rsub_wf less_than'_wf less_than_wf int_upper_wf all_wf le_wf less_than_transitivity1 int_upper_properties nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf intformle_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_less_lemma int_formula_prop_wf equal_wf nat_plus_subtype_nat false_wf square_non_neg mul_nat_plus decidable__le intformnot_wf int_formula_prop_not_lemma le_functionality le_weakening multiply_functionality_wrt_le div_bounds_1
Rules used in proof :  voidEquality isect_memberEquality intEquality int_eqEquality computeAll independent_isectElimination lambdaFormation independent_functionElimination because_Cache equalitySymmetry equalityTransitivity axiomEquality minusEquality rename setElimination natural_numberEquality hypothesis applyEquality isectElimination extract_by_obid voidElimination independent_pairEquality productElimination hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution unionElimination divideEquality multiplyEquality lemma_by_obid baseClosed imageMemberEquality independent_pairFormation dependent_set_memberEquality dependent_pairFormation

Latex:
\mforall{}[x:\mBbbR{}].  (r0  \mleq{}  (x  *  x))



Date html generated: 2017_10_03-AM-08_29_24
Last ObjectModification: 2017_08_02-PM-00_31_37

Theory : reals


Home Index