Nuprl Lemma : square-nonneg
∀[x:ℝ]. (r0 ≤ (x * x))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
top: Top
, 
req_int_terms: t1 ≡ t2
, 
itermConstant: "const"
, 
uimplies: b supposing a
, 
rnonneg2: rnonneg2(x)
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
so_apply: x[s]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
rmul-bdd-diff-reg-seq-mul, 
rnonneg2_functionality, 
req_weakening, 
rmul-identity1, 
rmul_functionality, 
req-iff-rsub-is-0, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
real_term_polynomial, 
req_transitivity, 
rnonneg_functionality, 
reg-seq-mul_wf, 
rnonneg-iff, 
nat_plus_wf, 
real_wf, 
int-to-real_wf, 
rmul_wf, 
rsub_wf, 
less_than'_wf, 
less_than_wf, 
int_upper_wf, 
all_wf, 
le_wf, 
less_than_transitivity1, 
int_upper_properties, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
intformle_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal_wf, 
nat_plus_subtype_nat, 
false_wf, 
square_non_neg, 
mul_nat_plus, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
div_bounds_1
Rules used in proof : 
voidEquality, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
computeAll, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
minusEquality, 
rename, 
setElimination, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
isectElimination, 
extract_by_obid, 
voidElimination, 
independent_pairEquality, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
unionElimination, 
divideEquality, 
multiplyEquality, 
lemma_by_obid, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
dependent_pairFormation
Latex:
\mforall{}[x:\mBbbR{}].  (r0  \mleq{}  (x  *  x))
Date html generated:
2017_10_03-AM-08_29_24
Last ObjectModification:
2017_08_02-PM-00_31_37
Theory : reals
Home
Index