Nuprl Lemma : rabs-rmul
∀[x,y:ℝ]. (|x * y| = (|x| * |y|))
Proof
Definitions occuring in Statement :
rabs: |x|
,
req: x = y
,
rmul: a * b
,
real: ℝ
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
real: ℝ
,
reg-seq-mul: reg-seq-mul(x;y)
,
rabs: |x|
,
nat_plus: ℕ+
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
bdd-diff: bdd-diff(f;g)
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
so_lambda: λ2x.t[x]
,
ge: i ≥ j
,
so_apply: x[s]
,
true: True
,
squash: ↓T
,
guard: {T}
,
less_than: a < b
,
absval: |i|
,
subtract: n - m
Lemmas referenced :
req-iff-bdd-diff,
rabs_wf,
rmul_wf,
bdd-diff_functionality,
absval_wf,
nat_plus_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformeq_wf,
itermMultiply_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_eq_lemma,
int_term_value_mul_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
equal-wf-base,
int_subtype_base,
nat_plus_wf,
reg-seq-mul_wf,
rabs_functionality_wrt_bdd-diff,
rmul-bdd-diff-reg-seq-mul,
false_wf,
le_wf,
all_wf,
subtract_wf,
nat_properties,
req_witness,
real_wf,
nat_wf,
squash_wf,
true_wf,
absval_mul,
iff_weakening_equal,
equal_wf,
absval_div_nat,
mul_nat_plus,
less_than_wf,
minus-one-mul,
add-mul-special,
zero-mul
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination,
independent_isectElimination,
dependent_functionElimination,
applyEquality,
lambdaEquality,
setElimination,
rename,
because_Cache,
sqequalRule,
divideEquality,
multiplyEquality,
natural_numberEquality,
lambdaFormation,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
baseApply,
closedConclusion,
baseClosed,
independent_functionElimination,
dependent_set_memberEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
universeEquality,
functionExtensionality
Latex:
\mforall{}[x,y:\mBbbR{}]. (|x * y| = (|x| * |y|))
Date html generated:
2017_10_03-AM-08_23_07
Last ObjectModification:
2017_07_28-AM-07_22_43
Theory : reals
Home
Index