Nuprl Lemma : rv-norm-squared

[rv:InnerProductSpace]. ∀[x:Point].  (||x||^2 x^2)


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-ip: x ⋅ y inner-product-space: InnerProductSpace ss-point: Point rnexp: x^k1 req: y uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) squash: T sq_stable: SqStable(P) uimplies: supposing a guard: {T} subtype_rel: A ⊆B not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: implies:  Q all: x:A. B[x] so_apply: x[s] prop: and: P ∧ Q so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  req_weakening rnexp2 req_functionality sq_stable__req separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf le_wf false_wf rnexp_wf req_witness equal_wf rv-ip_wf rmul_wf req_wf int-to-real_wf rleq_wf real_wf set_wf rv-norm_wf
Rules used in proof :  imageElimination baseClosed imageMemberEquality productElimination because_Cache isect_memberEquality independent_isectElimination instantiate setEquality rename setElimination applyEquality independent_pairFormation dependent_set_memberEquality independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity lambdaFormation natural_numberEquality productEquality lambdaEquality sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    (||x||\^{}2  =  x\^{}2)



Date html generated: 2016_11_08-AM-09_16_19
Last ObjectModification: 2016_10_31-PM-04_39_29

Theory : inner!product!spaces


Home Index