Nuprl Lemma : rv-norm-squared
∀[rv:InnerProductSpace]. ∀[x:Point].  (||x||^2 = x^2)
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
rnexp: x^k1
, 
req: x = y
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
req_weakening, 
rnexp2, 
req_functionality, 
sq_stable__req, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
le_wf, 
false_wf, 
rnexp_wf, 
req_witness, 
equal_wf, 
rv-ip_wf, 
rmul_wf, 
req_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
set_wf, 
rv-norm_wf
Rules used in proof : 
imageElimination, 
baseClosed, 
imageMemberEquality, 
productElimination, 
because_Cache, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
setEquality, 
rename, 
setElimination, 
applyEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
lambdaFormation, 
natural_numberEquality, 
productEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    (||x||\^{}2  =  x\^{}2)
Date html generated:
2016_11_08-AM-09_16_19
Last ObjectModification:
2016_10_31-PM-04_39_29
Theory : inner!product!spaces
Home
Index