Nuprl Lemma : rv-norm-nonneg

[rv:InnerProductSpace]. ∀[x:Point].  (r0 ≤ ||x||)


Proof




Definitions occuring in Statement :  rv-norm: ||x|| inner-product-space: InnerProductSpace ss-point: Point rleq: x ≤ y int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uimplies: supposing a guard: {T} real: subtype_rel: A ⊆B false: False not: ¬A le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y squash: T sq_stable: SqStable(P) implies:  Q all: x:A. B[x] so_apply: x[s] prop: and: P ∧ Q so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf nat_plus_wf rsub_wf less_than'_wf equal_wf sq_stable__rleq rv-ip_wf rmul_wf req_wf int-to-real_wf rleq_wf real_wf set_wf rv-norm_wf
Rules used in proof :  voidElimination isect_memberEquality independent_isectElimination instantiate axiomEquality minusEquality setEquality applyEquality because_Cache independent_pairEquality dependent_functionElimination equalitySymmetry equalityTransitivity imageElimination baseClosed imageMemberEquality productElimination independent_functionElimination rename setElimination lambdaFormation natural_numberEquality productEquality lambdaEquality sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    (r0  \mleq{}  ||x||)



Date html generated: 2016_11_08-AM-09_16_13
Last ObjectModification: 2016_10_31-PM-04_38_16

Theory : inner!product!spaces


Home Index