Nuprl Lemma : rv-norm-nonneg
∀[rv:InnerProductSpace]. ∀[x:Point].  (r0 ≤ ||x||)
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
false: False
, 
not: ¬A
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
nat_plus_wf, 
rsub_wf, 
less_than'_wf, 
equal_wf, 
sq_stable__rleq, 
rv-ip_wf, 
rmul_wf, 
req_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
set_wf, 
rv-norm_wf
Rules used in proof : 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
axiomEquality, 
minusEquality, 
setEquality, 
applyEquality, 
because_Cache, 
independent_pairEquality, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
productElimination, 
independent_functionElimination, 
rename, 
setElimination, 
lambdaFormation, 
natural_numberEquality, 
productEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    (r0  \mleq{}  ||x||)
Date html generated:
2016_11_08-AM-09_16_13
Last ObjectModification:
2016_10_31-PM-04_38_16
Theory : inner!product!spaces
Home
Index