Nuprl Lemma : rv-mul-linear
∀[rv:RealVectorSpace]. ∀[a:ℝ]. ∀[x,y:Point].  a*x + y ≡ a*x + a*y
Proof
Definitions occuring in Statement : 
rv-mul: a*x
, 
rv-add: x + y
, 
real-vector-space: RealVectorSpace
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
false: False
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rv-add: x + y
, 
rv-mul: a*x
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
subtype_rel: A ⊆r B
, 
record-select: r.x
, 
record+: record+, 
real-vector-space: RealVectorSpace
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real-vector-space_wf, 
rv-add_wf, 
rv-mul_wf, 
real-vector-space_subtype1, 
sq_stable__ss-eq, 
rneq_wf, 
radd_wf, 
rmul_wf, 
int-to-real_wf, 
real_wf, 
ss-sep_wf, 
ss-eq_wf, 
all_wf, 
ss-point_wf, 
subtype_rel_self
Rules used in proof : 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
Error :applyLambdaEquality, 
natural_numberEquality, 
rename, 
setElimination, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
functionExtensionality, 
lambdaEquality, 
productEquality, 
because_Cache, 
functionEquality, 
setEquality, 
isectElimination, 
extract_by_obid, 
tokenEquality, 
applyEquality, 
hypothesis, 
thin, 
dependentIntersectionEqElimination, 
sqequalRule, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[a:\mBbbR{}].  \mforall{}[x,y:Point].    a*x  +  y  \mequiv{}  a*x  +  a*y
Date html generated:
2016_11_08-AM-09_13_57
Last ObjectModification:
2016_10_31-PM-06_09_03
Theory : inner!product!spaces
Home
Index