Nuprl Lemma : rv-add-cancel-left

[rv:RealVectorSpace]. ∀[x,y,z:Point].  uiff(x y ≡ z;y ≡ z)


Proof




Definitions occuring in Statement :  rv-add: y real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] prop: subtype_rel: A ⊆B false: False implies:  Q not: ¬A ss-eq: x ≡ y uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-add-0 rv-add-minus rv-add-assoc ss-eq_transitivity ss-eq_functionality uiff_transitivity rv-0_wf rv-add_functionality ss-eq_weakening rv-minus_wf real-vector-space_wf ss-point_wf rv-add_wf ss-eq_wf real-vector-space_subtype1 ss-sep_wf
Rules used in proof :  independent_isectElimination independent_functionElimination equalitySymmetry equalityTransitivity isect_memberEquality independent_pairEquality productElimination voidElimination hypothesis applyEquality isectElimination extract_by_obid because_Cache hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x,y,z:Point].    uiff(x  +  y  \mequiv{}  x  +  z;y  \mequiv{}  z)



Date html generated: 2016_11_08-AM-09_14_24
Last ObjectModification: 2016_11_01-AM-11_53_47

Theory : inner!product!spaces


Home Index