Nuprl Lemma : rv-add-cancel-left
∀[rv:RealVectorSpace]. ∀[x,y,z:Point].  uiff(x + y ≡ x + z;y ≡ z)
Proof
Definitions occuring in Statement : 
rv-add: x + y
, 
real-vector-space: RealVectorSpace
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-add-0, 
rv-add-minus, 
rv-add-assoc, 
ss-eq_transitivity, 
ss-eq_functionality, 
uiff_transitivity, 
rv-0_wf, 
rv-add_functionality, 
ss-eq_weakening, 
rv-minus_wf, 
real-vector-space_wf, 
ss-point_wf, 
rv-add_wf, 
ss-eq_wf, 
real-vector-space_subtype1, 
ss-sep_wf
Rules used in proof : 
independent_isectElimination, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
voidElimination, 
hypothesis, 
applyEquality, 
isectElimination, 
extract_by_obid, 
because_Cache, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x,y,z:Point].    uiff(x  +  y  \mequiv{}  x  +  z;y  \mequiv{}  z)
Date html generated:
2016_11_08-AM-09_14_24
Last ObjectModification:
2016_11_01-AM-11_53_47
Theory : inner!product!spaces
Home
Index