Nuprl Lemma : ip-between_functionality

[rv:InnerProductSpace]. ∀[a,b,c,a2,b2,c2:Point].  (a ≡ a2  b ≡ b2  c ≡ c2  {a_b_c ⇐⇒ a2_b2_c2})


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x] guard: {T} iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q guard: {T} iff: ⇐⇒ Q and: P ∧ Q ip-between: a_b_c prop: rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ip-between_wf ss-eq_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_witness radd_wf rmul_wf rv-norm_wf rv-sub_wf real_wf rleq_wf int-to-real_wf req_wf rv-ip_wf ss-point_wf req_functionality radd_functionality rv-ip_functionality rv-sub_functionality rmul_functionality rv-norm_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule because_Cache lambdaEquality dependent_functionElimination productElimination independent_pairEquality setElimination rename setEquality productEquality natural_numberEquality independent_functionElimination isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,a2,b2,c2:Point].
    (a  \mequiv{}  a2  {}\mRightarrow{}  b  \mequiv{}  b2  {}\mRightarrow{}  c  \mequiv{}  c2  {}\mRightarrow{}  \{a\_b\_c  \mLeftarrow{}{}\mRightarrow{}  a2\_b2\_c2\})



Date html generated: 2017_10_04-PM-11_57_00
Last ObjectModification: 2017_03_09-PM-05_27_01

Theory : inner!product!spaces


Home Index