Nuprl Lemma : rv-norm-difference-symmetry
∀[rv:InnerProductSpace]. ∀[a,b:Point].  (||a - b|| = ||b - a||)
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rv-norm-equal-iff, 
rv-sub_wf, 
req_witness, 
rv-norm_wf, 
inner-product-space_subtype, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rsub_wf, 
itermSubtract_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
req_functionality, 
req_transitivity, 
rv-ip-sub, 
rsub_functionality, 
rv-ip-sub2, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
independent_functionElimination, 
instantiate, 
isect_memberEquality, 
dependent_functionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    (||a  -  b||  =  ||b  -  a||)
Date html generated:
2018_05_22-PM-09_29_49
Last ObjectModification:
2018_05_20-PM-10_42_57
Theory : inner!product!spaces
Home
Index