Nuprl Lemma : rv-ip-sub

[rv:InnerProductSpace]. ∀[x,y,z:Point].  (x y ⋅ (x ⋅ y ⋅ z))


Proof




Definitions occuring in Statement :  rv-sub: y rv-ip: x ⋅ y inner-product-space: InnerProductSpace ss-point: Point rsub: y req: y uall: [x:A]. B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) rsub: y uimplies: supposing a guard: {T} implies:  Q subtype_rel: A ⊆B rv-sub: y member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-ip-minus radd_functionality rv-ip-add req_transitivity req_functionality req_weakening rminus_wf radd_wf rv-minus_wf rv-add_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity real-vector-space_subtype1 ss-point_wf rsub_wf inner-product-space_subtype rv-sub_wf rv-ip_wf req_witness
Rules used in proof :  productElimination because_Cache isect_memberEquality independent_isectElimination instantiate independent_functionElimination sqequalRule hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y,z:Point].    (x  -  y  \mcdot{}  z  =  (x  \mcdot{}  z  -  y  \mcdot{}  z))



Date html generated: 2016_11_08-AM-09_15_37
Last ObjectModification: 2016_10_31-PM-03_28_54

Theory : inner!product!spaces


Home Index