Nuprl Lemma : rv-ip-sub
∀[rv:InnerProductSpace]. ∀[x,y,z:Point].  (x - y ⋅ z = (x ⋅ z - y ⋅ z))
Proof
Definitions occuring in Statement : 
rv-sub: x - y
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
rsub: x - y
, 
req: x = y
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
rsub: x - y
, 
uimplies: b supposing a
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
rv-sub: x - y
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-ip-minus, 
radd_functionality, 
rv-ip-add, 
req_transitivity, 
req_functionality, 
req_weakening, 
rminus_wf, 
radd_wf, 
rv-minus_wf, 
rv-add_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
real-vector-space_subtype1, 
ss-point_wf, 
rsub_wf, 
inner-product-space_subtype, 
rv-sub_wf, 
rv-ip_wf, 
req_witness
Rules used in proof : 
productElimination, 
because_Cache, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
independent_functionElimination, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y,z:Point].    (x  -  y  \mcdot{}  z  =  (x  \mcdot{}  z  -  y  \mcdot{}  z))
Date html generated:
2016_11_08-AM-09_15_37
Last ObjectModification:
2016_10_31-PM-03_28_54
Theory : inner!product!spaces
Home
Index