Nuprl Lemma : rv-norm-equal-iff

[rv:InnerProductSpace]. ∀[x,y:Point].  uiff(||x|| ||y||;x^2 y^2)


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y ss-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q iff: ⇐⇒ Q rev_implies:  Q guard: {T}
Lemmas referenced :  iff_weakening_uiff req_wf rv-norm_wf real_wf rleq_wf int-to-real_wf rmul_wf rv-ip_wf rnexp_wf false_wf le_wf rv-norm-eq-iff rv-norm-nonneg req_witness uiff_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_functionality req_weakening rv-norm-squared
Rules used in proof :  cut addLevel sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin independent_pairFormation isect_memberFormation introduction independent_isectElimination extract_by_obid isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality productEquality natural_numberEquality sqequalRule because_Cache dependent_set_memberEquality lambdaFormation independent_functionElimination cumulativity universeEquality instantiate independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point].    uiff(||x||  =  ||y||;x\^{}2  =  y\^{}2)



Date html generated: 2017_10_04-PM-11_51_33
Last ObjectModification: 2017_03_13-AM-10_44_03

Theory : inner!product!spaces


Home Index