Nuprl Lemma : rv-norm-eq-iff

[rv:InnerProductSpace]. ∀[x:Point]. ∀[r:ℝ].  uiff(||x|| r;x^2 r^2) supposing r0 ≤ r


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-ip: x ⋅ y inner-product-space: InnerProductSpace rleq: x ≤ y rnexp: x^k1 req: y int-to-real: r(n) real: ss-point: Point uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: subtype_rel: A ⊆B guard: {T} rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  req_witness rv-ip_wf rnexp_wf false_wf le_wf req_wf rv-norm_wf real_wf rleq_wf int-to-real_wf rmul_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_weakening req_functionality req_transitivity req_inversion rv-norm-squared rnexp_functionality square-req-iff rv-norm-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality sqequalRule lambdaFormation independent_functionElimination applyEquality lambdaEquality setElimination rename setEquality productEquality because_Cache productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination instantiate dependent_functionElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].  \mforall{}[r:\mBbbR{}].    uiff(||x||  =  r;x\^{}2  =  r\^{}2)  supposing  r0  \mleq{}  r



Date html generated: 2017_10_04-PM-11_51_30
Last ObjectModification: 2017_03_13-AM-10_42_26

Theory : inner!product!spaces


Home Index