Nuprl Lemma : rv-norm-eq-iff
∀[rv:InnerProductSpace]. ∀[x:Point]. ∀[r:ℝ].  uiff(||x|| = r;x^2 = r^2) supposing r0 ≤ r
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-point: Point
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
req_witness, 
rv-ip_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
req_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
rmul_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_weakening, 
req_functionality, 
req_transitivity, 
req_inversion, 
rv-norm-squared, 
rnexp_functionality, 
square-req-iff, 
rv-norm-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
lambdaFormation, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
instantiate, 
dependent_functionElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].  \mforall{}[r:\mBbbR{}].    uiff(||x||  =  r;x\^{}2  =  r\^{}2)  supposing  r0  \mleq{}  r
Date html generated:
2017_10_04-PM-11_51_30
Last ObjectModification:
2017_03_13-AM-10_42_26
Theory : inner!product!spaces
Home
Index