Nuprl Lemma : ip-congruent_wf
∀[rv:InnerProductSpace]. ∀[a,b,c,d:Point].  (ab=cd ∈ ℙ)
Proof
Definitions occuring in Statement : 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ip-congruent: ab=cd
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
req_wf, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
independent_isectElimination, 
isect_memberEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point].    (ab=cd  \mmember{}  \mBbbP{})
Date html generated:
2017_10_04-PM-11_56_19
Last ObjectModification:
2017_03_09-PM-01_59_48
Theory : inner!product!spaces
Home
Index