Nuprl Lemma : ip-congruent_wf

[rv:InnerProductSpace]. ∀[a,b,c,d:Point].  (ab=cd ∈ ℙ)


Proof




Definitions occuring in Statement :  ip-congruent: ab=cd inner-product-space: InnerProductSpace ss-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ip-congruent: ab=cd subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  req_wf rv-norm_wf rv-sub_wf inner-product-space_subtype ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point].    (ab=cd  \mmember{}  \mBbbP{})



Date html generated: 2017_10_04-PM-11_56_19
Last ObjectModification: 2017_03_09-PM-01_59_48

Theory : inner!product!spaces


Home Index