Step
*
of Lemma
ip-inner-Pasch'
∀rv:InnerProductSpace. ∀a,b:Point. ∀c:{c:Point| b # c} . ∀p:{p:Point| a_p_c ∧ a # p} . ∀q:{q:Point| b_q_c} .
(∃x:{Point| (a_x_q
∧ b_x_p
∧ (a # q
⇒ x # a)
∧ ((a # q ∧ p # c ∧ b # q)
⇒ x # q)
∧ ((b # p ∧ b # q)
⇒ x # b)
∧ ((b # p ∧ q # c)
⇒ x # p))})
BY
{ (InstLemma `ip-inner-Pasch` []
THEN RepeatFor 6 ((ParallelLast' THENA Auto))
THEN RepeatFor 2 ((D -1 THENA Auto))
THEN ExRepD
THEN D 0 With ⌜x⌝
THEN Auto) }
Latex:
Latex:
\mforall{}rv:InnerProductSpace. \mforall{}a,b:Point. \mforall{}c:\{c:Point| b \# c\} . \mforall{}p:\{p:Point| a\_p\_c \mwedge{} a \# p\} . \mforall{}q:\{q:Point|
b\_q\_c\} .
(\mexists{}x:\{Point| (a\_x\_q
\mwedge{} b\_x\_p
\mwedge{} (a \# q {}\mRightarrow{} x \# a)
\mwedge{} ((a \# q \mwedge{} p \# c \mwedge{} b \# q) {}\mRightarrow{} x \# q)
\mwedge{} ((b \# p \mwedge{} b \# q) {}\mRightarrow{} x \# b)
\mwedge{} ((b \# p \mwedge{} q \# c) {}\mRightarrow{} x \# p))\})
By
Latex:
(InstLemma `ip-inner-Pasch` []
THEN RepeatFor 6 ((ParallelLast' THENA Auto))
THEN RepeatFor 2 ((D -1 THENA Auto))
THEN ExRepD
THEN D 0 With \mkleeneopen{}x\mkleeneclose{}
THEN Auto)
Home
Index