Nuprl Lemma : ip-inner-Pasch'
∀rv:InnerProductSpace. ∀a,b:Point. ∀c:{c:Point| b # c} . ∀p:{p:Point| a_p_c ∧ a # p} . ∀q:{q:Point| b_q_c} .
  (∃x:{Point| (a_x_q
              ∧ b_x_p
              ∧ (a # q 
⇒ x # a)
              ∧ ((a # q ∧ p # c ∧ b # q) 
⇒ x # q)
              ∧ ((b # p ∧ b # q) 
⇒ x # b)
              ∧ ((b # p ∧ q # c) 
⇒ x # p))})
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
ip-inner-Pasch, 
ip-between_wf, 
sq_stable__rv-sep-ext, 
sq_stable__ip-between, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
set_wf, 
ss-point_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
isectElimination, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberFormation, 
independent_pairFormation, 
because_Cache, 
productEquality, 
functionEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  b  \#  c\}  .  \mforall{}p:\{p:Point|  a\_p\_c  \mwedge{}  a  \#  p\}  .  \mforall{}q:\{q:Point| 
                                                                                                                                                                                  b\_q\_c\}  .
    (\mexists{}x:\{Point|  (a\_x\_q
                            \mwedge{}  b\_x\_p
                            \mwedge{}  (a  \#  q  {}\mRightarrow{}  x  \#  a)
                            \mwedge{}  ((a  \#  q  \mwedge{}  p  \#  c  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  q)
                            \mwedge{}  ((b  \#  p  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  b)
                            \mwedge{}  ((b  \#  p  \mwedge{}  q  \#  c)  {}\mRightarrow{}  x  \#  p))\})
Date html generated:
2017_10_05-AM-00_05_12
Last ObjectModification:
2017_03_15-PM-09_01_27
Theory : inner!product!spaces
Home
Index