Nuprl Lemma : ip-inner-Pasch'

rv:InnerProductSpace. ∀a,b:Point. ∀c:{c:Point| c} . ∀p:{p:Point| a_p_c ∧ p} . ∀q:{q:Point| b_q_c} .
  (∃x:{Point| (a_x_q
              ∧ b_x_p
              ∧ (a  a)
              ∧ ((a q ∧ c ∧ q)  q)
              ∧ ((b p ∧ q)  b)
              ∧ ((b p ∧ c)  p))})


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-sep: y ss-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]} implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] prop: implies:  Q sq_stable: SqStable(P) squash: T exists: x:A. B[x] sq_exists: x:{A| B[x]} cand: c∧ B subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  ip-inner-Pasch ip-between_wf sq_stable__rv-sep-ext sq_stable__ip-between ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf set_wf ss-point_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename dependent_set_memberEquality productElimination isectElimination independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination dependent_set_memberFormation independent_pairFormation because_Cache productEquality functionEquality applyEquality instantiate independent_isectElimination lambdaEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  b  \#  c\}  .  \mforall{}p:\{p:Point|  a\_p\_c  \mwedge{}  a  \#  p\}  .  \mforall{}q:\{q:Point| 
                                                                                                                                                                                  b\_q\_c\}  .
    (\mexists{}x:\{Point|  (a\_x\_q
                            \mwedge{}  b\_x\_p
                            \mwedge{}  (a  \#  q  {}\mRightarrow{}  x  \#  a)
                            \mwedge{}  ((a  \#  q  \mwedge{}  p  \#  c  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  q)
                            \mwedge{}  ((b  \#  p  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  b)
                            \mwedge{}  ((b  \#  p  \mwedge{}  q  \#  c)  {}\mRightarrow{}  x  \#  p))\})



Date html generated: 2017_10_05-AM-00_05_12
Last ObjectModification: 2017_03_15-PM-09_01_27

Theory : inner!product!spaces


Home Index