Nuprl Lemma : sq_stable__ip-between

[rv:InnerProductSpace]. ∀[a,b,c:Point].  SqStable(a_b_c)


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-point: Point sq_stable: SqStable(P) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ip-between: a_b_c subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q prop: guard: {T} uimplies: supposing a
Lemmas referenced :  sq_stable__req radd_wf rmul_wf rv-norm_wf rv-sub_wf inner-product-space_subtype rv-ip_wf int-to-real_wf req_witness squash_wf ip-between_wf ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule because_Cache natural_numberEquality lambdaEquality dependent_functionElimination independent_functionElimination instantiate independent_isectElimination isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c:Point].    SqStable(a\_b\_c)



Date html generated: 2017_10_04-PM-11_59_54
Last ObjectModification: 2017_03_14-PM-03_14_57

Theory : inner!product!spaces


Home Index