Nuprl Lemma : ip-inner-Pasch

rv:InnerProductSpace. ∀a,b,c:Point. ∀p:{p:Point| a_p_c} . ∀q:{q:Point| b_q_c} .
  (a p
   c
   (∃x:{x:Point| a_x_q ∧ b_x_p} 
       ((a  a)
       ∧ ((a q ∧ c ∧ q)  q)
       ∧ ((b p ∧ q)  b)
       ∧ ((b p ∧ c)  p))))


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T exists: x:A. B[x] and: P ∧ Q cand: c∧ B prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  ip-inner-Pasch1 sq_stable__ip-between ip-between_wf ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf set_wf ss-point_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename independent_functionElimination isectElimination sqequalRule imageMemberEquality baseClosed imageElimination productElimination dependent_pairFormation dependent_set_memberEquality independent_pairFormation productEquality functionEquality applyEquality instantiate independent_isectElimination because_Cache lambdaEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.  \mforall{}p:\{p:Point|  a\_p\_c\}  .  \mforall{}q:\{q:Point|  b\_q\_c\}  .
    (a  \#  p
    {}\mRightarrow{}  b  \#  c
    {}\mRightarrow{}  (\mexists{}x:\{x:Point|  a\_x\_q  \mwedge{}  b\_x\_p\} 
              ((a  \#  q  {}\mRightarrow{}  x  \#  a)
              \mwedge{}  ((a  \#  q  \mwedge{}  p  \#  c  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  q)
              \mwedge{}  ((b  \#  p  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  b)
              \mwedge{}  ((b  \#  p  \mwedge{}  q  \#  c)  {}\mRightarrow{}  x  \#  p))))



Date html generated: 2017_10_05-AM-00_05_08
Last ObjectModification: 2017_03_15-AM-10_28_45

Theory : inner!product!spaces


Home Index