Nuprl Lemma : ip-inner-Pasch1

rv:InnerProductSpace. ∀a,b,c,p,q:Point.
  (a p
   c
   a_p_c
   b_q_c
   (∃x:Point
       (a_x_q
       ∧ b_x_p
       ∧ (a  a)
       ∧ ((a q ∧ c ∧ q)  q)
       ∧ ((b p ∧ q)  b)
       ∧ ((b p ∧ c)  p))))


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] top: Top prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q false: False uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rsub: y rev_implies:  Q cand: c∧ B rge: x ≥ y rneq: x ≠ y squash: T true: True rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A real: i-member: r ∈ I rccint: [l, u] rcoint: [l, u)
Lemmas referenced :  ip-between-sep ip-between-iff2 member_rccint_lemma ip-between_wf ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-point_wf ip-dist-between-1 rv-norm_wf rv-sub_wf rv-add_wf rv-mul_wf rsub_wf int-to-real_wf req_wf rv-ip_wf rmul_wf rabs_wf rv-norm-positive rv-sep-iff real_wf rleq_wf rmul-is-positive zero-rleq-rabs rless_transitivity1 rless_irreflexivity radd-preserves-rleq radd_wf rminus_wf radd-preserves-rless req_functionality rv-norm_functionality rv-sub_functionality ss-eq_weakening ss-eq_inversion req_weakening rless_functionality rabs-of-nonneg uiff_transitivity rleq_functionality radd_comm radd-ac radd_functionality radd-rminus-both radd-zero-both rless_wf rmul_comm rless_functionality_wrt_implies rmul_functionality_wrt_rleq2 rleq_weakening_equal rmul-one-both rmul_preserves_rleq rdiv_wf member_rcoint_lemma rmul_preserves_rless equal_wf squash_wf true_wf iff_weakening_equal rmul_preserves_rleq2 less_than'_wf nat_plus_wf rmul-rdiv-cancel2 req_transitivity rmul-distrib rmul_over_rminus rminus_functionality rmul-zero-both rminus-zero rmul_preserves_req rmul_functionality req_inversion rmul-assoc rminus-radd radd-assoc rminus-as-rmul rminus-rminus radd-rminus-assoc rmul-ac radd-preserves-req i-member_wf rcoint_wf rccint_wf ss-eq_wf ss-eq_functionality rv-add_functionality rv-mul_functionality ss-eq_transitivity rv-mul-linear rv-mul-mul rv-add-assoc rv-add-comm rleq_weakening_rless rv-mul-add rv-mul1 ip-between_functionality rv-sep-iff-norm ip-dist-between-2 rless_transitivity2 ss-sep-symmetry ss-sep_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination hypothesis because_Cache productElimination independent_functionElimination rename isect_memberEquality voidElimination voidEquality applyEquality instantiate sqequalRule natural_numberEquality lambdaEquality setElimination setEquality productEquality unionElimination promote_hyp inlFormation independent_pairFormation addLevel levelHypothesis equalityTransitivity equalitySymmetry inrFormation imageElimination imageMemberEquality baseClosed universeEquality isect_memberFormation independent_pairEquality minusEquality axiomEquality dependent_pairFormation functionEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c,p,q:Point.
    (a  \#  p
    {}\mRightarrow{}  b  \#  c
    {}\mRightarrow{}  a\_p\_c
    {}\mRightarrow{}  b\_q\_c
    {}\mRightarrow{}  (\mexists{}x:Point
              (a\_x\_q
              \mwedge{}  b\_x\_p
              \mwedge{}  (a  \#  q  {}\mRightarrow{}  x  \#  a)
              \mwedge{}  ((a  \#  q  \mwedge{}  p  \#  c  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  q)
              \mwedge{}  ((b  \#  p  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  b)
              \mwedge{}  ((b  \#  p  \mwedge{}  q  \#  c)  {}\mRightarrow{}  x  \#  p))))



Date html generated: 2017_10_05-AM-00_05_04
Last ObjectModification: 2017_03_13-AM-00_16_06

Theory : inner!product!spaces


Home Index