Nuprl Lemma : ip-inner-Pasch1
∀rv:InnerProductSpace. ∀a,b,c,p,q:Point.
  (a # p
  
⇒ b # c
  
⇒ a_p_c
  
⇒ b_q_c
  
⇒ (∃x:Point
       (a_x_q
       ∧ b_x_p
       ∧ (a # q 
⇒ x # a)
       ∧ ((a # q ∧ p # c ∧ b # q) 
⇒ x # q)
       ∧ ((b # p ∧ b # q) 
⇒ x # b)
       ∧ ((b # p ∧ q # c) 
⇒ x # p))))
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
rge: x ≥ y
, 
rneq: x ≠ y
, 
squash: ↓T
, 
true: True
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
real: ℝ
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
rcoint: [l, u)
Lemmas referenced : 
ip-between-sep, 
ip-between-iff2, 
member_rccint_lemma, 
ip-between_wf, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-point_wf, 
ip-dist-between-1, 
rv-norm_wf, 
rv-sub_wf, 
rv-add_wf, 
rv-mul_wf, 
rsub_wf, 
int-to-real_wf, 
req_wf, 
rv-ip_wf, 
rmul_wf, 
rabs_wf, 
rv-norm-positive, 
rv-sep-iff, 
real_wf, 
rleq_wf, 
rmul-is-positive, 
zero-rleq-rabs, 
rless_transitivity1, 
rless_irreflexivity, 
radd-preserves-rleq, 
radd_wf, 
rminus_wf, 
radd-preserves-rless, 
req_functionality, 
rv-norm_functionality, 
rv-sub_functionality, 
ss-eq_weakening, 
ss-eq_inversion, 
req_weakening, 
rless_functionality, 
rabs-of-nonneg, 
uiff_transitivity, 
rleq_functionality, 
radd_comm, 
radd-ac, 
radd_functionality, 
radd-rminus-both, 
radd-zero-both, 
rless_wf, 
rmul_comm, 
rless_functionality_wrt_implies, 
rmul_functionality_wrt_rleq2, 
rleq_weakening_equal, 
rmul-one-both, 
rmul_preserves_rleq, 
rdiv_wf, 
member_rcoint_lemma, 
rmul_preserves_rless, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
rmul_preserves_rleq2, 
less_than'_wf, 
nat_plus_wf, 
rmul-rdiv-cancel2, 
req_transitivity, 
rmul-distrib, 
rmul_over_rminus, 
rminus_functionality, 
rmul-zero-both, 
rminus-zero, 
rmul_preserves_req, 
rmul_functionality, 
req_inversion, 
rmul-assoc, 
rminus-radd, 
radd-assoc, 
rminus-as-rmul, 
rminus-rminus, 
radd-rminus-assoc, 
rmul-ac, 
radd-preserves-req, 
i-member_wf, 
rcoint_wf, 
rccint_wf, 
ss-eq_wf, 
ss-eq_functionality, 
rv-add_functionality, 
rv-mul_functionality, 
ss-eq_transitivity, 
rv-mul-linear, 
rv-mul-mul, 
rv-add-assoc, 
rv-add-comm, 
rleq_weakening_rless, 
rv-mul-add, 
rv-mul1, 
ip-between_functionality, 
rv-sep-iff-norm, 
ip-dist-between-2, 
rless_transitivity2, 
ss-sep-symmetry, 
ss-sep_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
productElimination, 
independent_functionElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
instantiate, 
sqequalRule, 
natural_numberEquality, 
lambdaEquality, 
setElimination, 
setEquality, 
productEquality, 
unionElimination, 
promote_hyp, 
inlFormation, 
independent_pairFormation, 
addLevel, 
levelHypothesis, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
isect_memberFormation, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
dependent_pairFormation, 
functionEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c,p,q:Point.
    (a  \#  p
    {}\mRightarrow{}  b  \#  c
    {}\mRightarrow{}  a\_p\_c
    {}\mRightarrow{}  b\_q\_c
    {}\mRightarrow{}  (\mexists{}x:Point
              (a\_x\_q
              \mwedge{}  b\_x\_p
              \mwedge{}  (a  \#  q  {}\mRightarrow{}  x  \#  a)
              \mwedge{}  ((a  \#  q  \mwedge{}  p  \#  c  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  q)
              \mwedge{}  ((b  \#  p  \mwedge{}  b  \#  q)  {}\mRightarrow{}  x  \#  b)
              \mwedge{}  ((b  \#  p  \mwedge{}  q  \#  c)  {}\mRightarrow{}  x  \#  p))))
Date html generated:
2017_10_05-AM-00_05_04
Last ObjectModification:
2017_03_13-AM-00_16_06
Theory : inner!product!spaces
Home
Index