Nuprl Lemma : ss-sep_functionality
∀ss:SeparationSpace. ∀x,y,x',y':Point.  (x ≡ x' ⇒ y ≡ y' ⇒ {x # y ⇐⇒ x' # y'})
Proof
Definitions occuring in Statement : 
ss-eq: x ≡ y, 
ss-sep: x # y, 
ss-point: Point, 
separation-space: SeparationSpace, 
guard: {T}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
false: False, 
not: ¬A, 
ss-eq: x ≡ y, 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
guard: {T}, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
ss-eq_inversion, 
ss-sep-or, 
separation-space_wf, 
ss-point_wf, 
ss-eq_wf, 
ss-sep_wf
Rules used in proof : 
independent_pairFormation, 
voidElimination, 
unionElimination, 
independent_functionElimination, 
dependent_functionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut
Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y,x',y':Point.    (x  \mequiv{}  x'  {}\mRightarrow{}  y  \mequiv{}  y'  {}\mRightarrow{}  \{x  \#  y  \mLeftarrow{}{}\mRightarrow{}  x'  \#  y'\})
Date html generated:
2016_11_08-AM-09_11_14
Last ObjectModification:
2016_11_02-PM-03_05_24
Theory : inner!product!spaces
Home
Index