Nuprl Lemma : ss-sep_functionality

ss:SeparationSpace. ∀x,y,x',y':Point.  (x ≡ x'  y ≡ y'  {x ⇐⇒ x' y'})


Proof




Definitions occuring in Statement :  ss-eq: x ≡ y ss-sep: y ss-point: Point separation-space: SeparationSpace guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q false: False not: ¬A ss-eq: x ≡ y or: P ∨ Q uall: [x:A]. B[x] prop: member: t ∈ T guard: {T} implies:  Q all: x:A. B[x]
Lemmas referenced :  ss-eq_inversion ss-sep-or separation-space_wf ss-point_wf ss-eq_wf ss-sep_wf
Rules used in proof :  independent_pairFormation voidElimination unionElimination independent_functionElimination dependent_functionElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y,x',y':Point.    (x  \mequiv{}  x'  {}\mRightarrow{}  y  \mequiv{}  y'  {}\mRightarrow{}  \{x  \#  y  \mLeftarrow{}{}\mRightarrow{}  x'  \#  y'\})



Date html generated: 2016_11_08-AM-09_11_14
Last ObjectModification: 2016_11_02-PM-03_05_24

Theory : inner!product!spaces


Home Index