Nuprl Lemma : rmul_functionality_wrt_rleq2

[x,y,z,w:ℝ].  ((x w) ≤ (z y)) supposing ((w ≤ y) and (x ≤ z) and (((r0 ≤ x) ∧ (r0 ≤ y)) ∨ ((r0 ≤ w) ∧ (r0 ≤ z))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a or: P ∨ Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) guard: {T}
Lemmas referenced :  less_than'_wf rsub_wf rmul_wf real_wf nat_plus_wf rleq_wf or_wf int-to-real_wf rmul_functionality_wrt_rleq rleq-implies-rleq real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rleq_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin sqequalRule lambdaEquality dependent_functionElimination hypothesisEquality productElimination independent_pairEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productEquality voidElimination independent_isectElimination comment computeAll int_eqEquality intEquality voidEquality

Latex:
\mforall{}[x,y,z,w:\mBbbR{}].
    ((x  *  w)  \mleq{}  (z  *  y))  supposing 
          ((w  \mleq{}  y)  and 
          (x  \mleq{}  z)  and 
          (((r0  \mleq{}  x)  \mwedge{}  (r0  \mleq{}  y))  \mvee{}  ((r0  \mleq{}  w)  \mwedge{}  (r0  \mleq{}  z))))



Date html generated: 2017_10_03-AM-08_26_26
Last ObjectModification: 2017_07_28-AM-07_24_19

Theory : reals


Home Index