Nuprl Lemma : rmul_functionality_wrt_rleq2
∀[x,y,z,w:ℝ].  ((x * w) ≤ (z * y)) supposing ((w ≤ y) and (x ≤ z) and (((r0 ≤ x) ∧ (r0 ≤ y)) ∨ ((r0 ≤ w) ∧ (r0 ≤ z))))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
uiff: uiff(P;Q)
, 
guard: {T}
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
rmul_wf, 
real_wf, 
nat_plus_wf, 
rleq_wf, 
or_wf, 
int-to-real_wf, 
rmul_functionality_wrt_rleq, 
rleq-implies-rleq, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rleq_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
productEquality, 
voidElimination, 
independent_isectElimination, 
comment, 
computeAll, 
int_eqEquality, 
intEquality, 
voidEquality
Latex:
\mforall{}[x,y,z,w:\mBbbR{}].
    ((x  *  w)  \mleq{}  (z  *  y))  supposing 
          ((w  \mleq{}  y)  and 
          (x  \mleq{}  z)  and 
          (((r0  \mleq{}  x)  \mwedge{}  (r0  \mleq{}  y))  \mvee{}  ((r0  \mleq{}  w)  \mwedge{}  (r0  \mleq{}  z))))
Date html generated:
2017_10_03-AM-08_26_26
Last ObjectModification:
2017_07_28-AM-07_24_19
Theory : reals
Home
Index