Nuprl Lemma : ip-between-sep

rv:InnerProductSpace. ∀a,c:Point.  ∀[b:Point]. (a c) supposing (a and a_b_c)


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-sep: y ss-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ip-between: a_b_c subtype_rel: A ⊆B implies:  Q sq_stable: SqStable(P) squash: T prop: guard: {T} and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q rge: x ≥ y
Lemmas referenced :  req_witness radd_wf rmul_wf rv-norm_wf rv-sub_wf inner-product-space_subtype rv-ip_wf int-to-real_wf sq_stable__rv-sep-ext ip-dist-between ss-sep_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ip-between_wf ss-point_wf rv-norm-positive rv-sep-iff rv-norm-nonneg real_wf rleq_wf req_wf trivial-rless-radd rless_functionality_wrt_implies rleq_weakening_equal rleq_transitivity radd_functionality_wrt_rleq rleq_weakening req_inversion rv-norm-positive-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality applyEquality hypothesis because_Cache natural_numberEquality independent_functionElimination rename dependent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination instantiate productElimination independent_pairFormation lambdaEquality setElimination setEquality productEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,c:Point.    \mforall{}[b:Point].  (a  \#  c)  supposing  (a  \#  b  and  a\_b\_c)



Date html generated: 2017_10_05-AM-00_01_50
Last ObjectModification: 2017_03_12-PM-03_14_40

Theory : inner!product!spaces


Home Index