Nuprl Lemma : rv-norm-positive-iff

rv:InnerProductSpace. ∀x:Point.  (x ⇐⇒ r0 < ||x||)


Proof




Definitions occuring in Statement :  rv-norm: ||x|| inner-product-space: InnerProductSpace rv-0: 0 ss-sep: y ss-point: Point rless: x < y int-to-real: r(n) all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  not: ¬A false: False le: A ≤ B nat: true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + rev_implies:  Q uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  rv-norm-squared rv-ip-positive iff_weakening_equal true_wf squash_wf req_weakening rnexp-int rless_functionality exp-zero exp_wf2 le_wf false_wf rnexp_wf less_than_wf rleq_weakening_equal rnexp-rless ss-point_wf rv-ip_wf rmul_wf req_wf rleq_wf real_wf rv-norm_wf int-to-real_wf rless_wf rv-0_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-sep_wf rv-norm-positive
Rules used in proof :  universeEquality intEquality equalitySymmetry equalityTransitivity imageElimination productElimination baseClosed imageMemberEquality dependent_set_memberEquality because_Cache productEquality setEquality rename setElimination lambdaEquality natural_numberEquality sqequalRule independent_isectElimination instantiate applyEquality isectElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.    (x  \#  0  \mLeftarrow{}{}\mRightarrow{}  r0  <  ||x||)



Date html generated: 2016_11_08-AM-09_16_27
Last ObjectModification: 2016_11_02-PM-03_05_33

Theory : inner!product!spaces


Home Index