Nuprl Lemma : exp-zero
∀[n:ℕ+]. (0^n = 0 ∈ ℤ)
Proof
Definitions occuring in Statement :
exp: i^n
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
nat_plus: ℕ+
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
exp: i^n
,
top: Top
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
bfalse: ff
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
nequal: a ≠ b ∈ T
,
subtract: n - m
,
nat: ℕ
,
decidable: Dec(P)
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
exp1,
iff_weakening_equal,
nat_plus_properties,
equal-wf-base,
int_subtype_base,
nat_plus_wf,
primrec-wf-nat-plus,
equal-wf-T-base,
exp_wf2,
nat_plus_subtype_nat,
primrec-unroll,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
satisfiable-full-omega-tt,
intformand_wf,
intformeq_wf,
itermVar_wf,
itermConstant_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
itermAdd_wf,
int_term_value_add_lemma,
add-associates,
zero-mul,
primrec_wf,
decidable__le,
intformnot_wf,
intformle_wf,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
le_wf,
int_seg_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
introduction,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
because_Cache,
intEquality,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
universeEquality,
independent_isectElimination,
productElimination,
independent_functionElimination,
lambdaFormation,
rename,
setElimination,
baseApply,
closedConclusion,
addEquality,
isect_memberEquality,
voidElimination,
voidEquality,
unionElimination,
equalityElimination,
dependent_pairFormation,
int_eqEquality,
dependent_functionElimination,
independent_pairFormation,
computeAll,
promote_hyp,
instantiate,
cumulativity,
minusEquality,
dependent_set_memberEquality,
multiplyEquality
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}]. (0\^{}n = 0)
Date html generated:
2017_04_17-AM-09_44_52
Last ObjectModification:
2017_02_27-PM-05_38_58
Theory : num_thy_1
Home
Index