Nuprl Lemma : exp-zero

[n:ℕ+]. (0^n 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] exp: i^n top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  subtract: m nat: decidable: Dec(P)
Lemmas referenced :  equal_wf squash_wf true_wf exp1 iff_weakening_equal nat_plus_properties equal-wf-base int_subtype_base nat_plus_wf primrec-wf-nat-plus equal-wf-T-base exp_wf2 nat_plus_subtype_nat primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int itermAdd_wf int_term_value_add_lemma add-associates zero-mul primrec_wf decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma le_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache intEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination lambdaFormation rename setElimination baseApply closedConclusion addEquality isect_memberEquality voidElimination voidEquality unionElimination equalityElimination dependent_pairFormation int_eqEquality dependent_functionElimination independent_pairFormation computeAll promote_hyp instantiate cumulativity minusEquality dependent_set_memberEquality multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (0\^{}n  =  0)



Date html generated: 2017_04_17-AM-09_44_52
Last ObjectModification: 2017_02_27-PM-05_38_58

Theory : num_thy_1


Home Index