Nuprl Lemma : primrec-wf-nat-plus

[P:ℕ+ ⟶ ℙ]. ∀[b:P[1]]. ∀[s:∀n:ℕ+(P[n]  P[n 1])]. ∀[n:ℕ+].  (primrec(n 1;b;λi,x. (s (i 1) x)) ∈ P[n])


Proof




Definitions occuring in Statement :  primrec: primrec(n;b;c) nat_plus: + uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a int_upper: {i...} nat_plus: + all: x:A. B[x] implies:  Q le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) top: Top less_than': less_than'(a;b) true: True subtract: m less_than: a < b squash: T
Lemmas referenced :  all_wf le-add-cancel2 add-swap not-le-2 decidable__le add-zero add-associates minus-one-mul-top minus-one-mul minus-add condition-implies-le less-iff-le subtype_rel_self le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 false_wf decidable__lt less_than_wf le_wf subtype_rel_sets int_upper_wf nat_plus_wf subtype_rel_dep_function primrec-wf-upper
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin natural_numberEquality isect_memberFormation hypothesis hypothesisEquality applyEquality instantiate cumulativity sqequalRule lambdaEquality universeEquality independent_isectElimination intEquality because_Cache setElimination rename setEquality lambdaFormation productElimination dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination isect_memberEquality voidEquality functionEquality dependent_set_memberEquality addEquality minusEquality equalityTransitivity equalitySymmetry introduction imageMemberEquality baseClosed

Latex:
\mforall{}[P:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[b:P[1]].  \mforall{}[s:\mforall{}n:\mBbbN{}\msupplus{}.  (P[n]  {}\mRightarrow{}  P[n  +  1])].  \mforall{}[n:\mBbbN{}\msupplus{}].
    (primrec(n  -  1;b;\mlambda{}i,x.  (s  (i  +  1)  x))  \mmember{}  P[n])



Date html generated: 2016_05_13-PM-03_46_40
Last ObjectModification: 2016_01_14-PM-07_11_32

Theory : call!by!value_2


Home Index