Nuprl Lemma : rnexp-rless

x,y:ℝ.  ((r0 ≤ x)  (x < y)  (∀n:ℕ+(x^n < y^n)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rnexp: x^k1 int-to-real: r(n) real: nat_plus: + all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  req_int_terms: t1 ≡ t2 rge: x ≥ y cand: c∧ B rev_implies:  Q iff: ⇐⇒ Q subtract: m eq_int: (i =z j) true: True nequal: a ≠ b ∈  assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 less_than': less_than'(a;b) le: A ≤ B so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) squash: T sq_stable: SqStable(P) real: sq_exists: x:A [B[x]] rless: x < y nat: nat_plus: + prop: subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  rless_transitivity2 rnexp-positive real_term_value_const_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 itermMultiply_wf itermSubtract_wf rsub_wf rless-implies-rless rmul_preserves_rless rleq_weakening_equal rmul_functionality_wrt_rleq2 rless_functionality_wrt_implies rnexp-nonneg rleq_weakening_rless rnexp_unroll rless_functionality add-subtract-cancel subtract_wf int_term_value_add_lemma itermAdd_wf int_subtype_base int_formula_prop_eq_lemma intformeq_wf rmul_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf false_wf primrec-wf-nat-plus le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le sq_stable__less_than nat_plus_properties real_wf int-to-real_wf rleq_wf nat_plus_wf rless_wf nat_plus_subtype_nat rnexp_wf rlessw_wf
Rules used in proof :  productEquality inlFormation cumulativity instantiate promote_hyp equalitySymmetry equalityTransitivity productElimination equalityElimination independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation approximateComputation independent_isectElimination unionElimination imageElimination baseClosed imageMemberEquality independent_functionElimination addEquality setElimination rename natural_numberEquality because_Cache dependent_set_memberEquality sqequalRule hypothesis applyEquality hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (x  <  y)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (x\^{}n  <  y\^{}n)))



Date html generated: 2018_05_22-PM-01_33_01
Last ObjectModification: 2018_05_21-AM-00_08_06

Theory : reals


Home Index