Nuprl Lemma : ip-dist-between
∀[rv:InnerProductSpace]. ∀[a,b,c:Point].  ||a - c|| = (||a - b|| + ||b - c||) supposing a_b_c
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
radd: a + b
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
stable: Stable{P}
, 
not: ¬A
, 
or: P ∨ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
top: Top
, 
rsub: x - y
, 
ss-eq: x ≡ y
, 
rv-sub: x - y
, 
rv-minus: -x
Lemmas referenced : 
req_witness, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
radd_wf, 
ip-between_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
stable_req, 
false_wf, 
or_wf, 
ss-sep_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
ip-between-iff, 
ss-sep-symmetry, 
rv-add_wf, 
rv-mul_wf, 
rsub_wf, 
rabs_wf, 
uiff_transitivity, 
req_functionality, 
req_weakening, 
radd_functionality, 
rv-norm_functionality, 
rv-sub_functionality, 
ss-eq_weakening, 
ip-dist-between-2, 
ip-dist-between-1, 
member_rooint_lemma, 
rleq_weakening_rless, 
radd-preserves-rleq, 
rminus_wf, 
rmul_functionality, 
rabs-of-nonneg, 
rleq_functionality, 
radd_comm, 
radd-ac, 
radd-rminus-both, 
radd-zero-both, 
req_transitivity, 
rmul-distrib, 
rmul_over_rminus, 
rmul-one-both, 
rmul_comm, 
rminus_functionality, 
req_inversion, 
radd-assoc, 
ss-eq_wf, 
rv-0_wf, 
ss-eq_functionality, 
rv-mul-1-add, 
rv-mul_functionality, 
radd-int, 
rv-mul0, 
rv-norm0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
independent_isectElimination, 
functionEquality, 
lambdaFormation, 
unionElimination, 
voidElimination, 
dependent_functionElimination, 
productElimination, 
voidEquality, 
minusEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c:Point].    ||a  -  c||  =  (||a  -  b||  +  ||b  -  c||)  supposing  a\_b\_c
Date html generated:
2017_10_05-AM-00_01_37
Last ObjectModification:
2017_03_11-PM-06_07_11
Theory : inner!product!spaces
Home
Index