Nuprl Lemma : rv-norm0

[rv:InnerProductSpace]. (||0|| r0)


Proof




Definitions occuring in Statement :  rv-norm: ||x|| inner-product-space: InnerProductSpace rv-0: 0 req: y int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) prop: nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] true: True guard: {T}
Lemmas referenced :  rv-norm_wf rv-0_wf req_witness inner-product-space_subtype int-to-real_wf inner-product-space_wf sq_stable__req req_wf rmul_wf rv-ip_wf square-req-iff rleq_weakening_equal req_functionality rnexp_wf istype-void istype-le exp_wf2 req_weakening rnexp-int squash_wf true_wf real_wf istype-int exp-zero decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than subtype_rel_self iff_weakening_equal rnexp2 iff_weakening_uiff rv-ip0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis sqequalRule inhabitedIsType lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination lambdaEquality_alt setElimination rename natural_numberEquality universeIsType imageMemberEquality baseClosed imageElimination productElimination independent_isectElimination dependent_set_memberEquality_alt independent_pairFormation voidElimination unionElimination approximateComputation dependent_pairFormation_alt Error :memTop,  instantiate universeEquality promote_hyp

Latex:
\mforall{}[rv:InnerProductSpace].  (||0||  =  r0)



Date html generated: 2020_05_20-PM-01_11_26
Last ObjectModification: 2019_12_09-PM-11_48_31

Theory : inner!product!spaces


Home Index