Nuprl Lemma : ip-between-iff

rv:InnerProductSpace. ∀a,b,c:Point.  (a   (a_b_c ⇐⇒ ∃t:ℝ((t ∈ (r0, r1)) ∧ b ≡ t*a r1 t*c)))


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y rooint: (l, u) i-member: r ∈ I rsub: y int-to-real: r(n) real: ss-eq: x ≡ y ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_apply: x[s] ip-between: a_b_c rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: or: P ∨ Q rneq: x ≠ y rge: x ≥ y true: True squash: T less_than: a < b cand: c∧ B top: Top req_int_terms: t1 ≡ t2 itermConstant: "const" rdiv: (x/y) rv-minus: -x rv-sub: y rsub: y label: ...$L... t ml-term-to-poly: ml-term-to-poly(t) nil: [] it: has-value: (a)↓
Lemmas referenced :  ip-between_wf exists_wf real_wf i-member_wf rooint_wf int-to-real_wf ss-eq_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rv-add_wf rv-mul_wf rsub_wf ss-sep_wf ss-point_wf rv-sep-iff rv-sub_wf rv-Cauchy-Schwarz-equality rnexp-rmul rv-norm-squared req_inversion rmul_functionality req_weakening req_functionality uiff_transitivity rleq_wf rv-norm_wf rmul_wf rv-ip_wf le_wf false_wf rnexp_wf req_wf equal_wf radd_wf rmul_comm rv-ip-symmetry rnexp_functionality radd-zero-both radd-rminus-assoc radd-ac radd_comm radd_functionality rminus_wf radd-preserves-req rminus-rminus rminus_functionality rmul_over_rminus req_transitivity rnexp2 rv-norm_functionality ss-eq_weakening rv-ip_functionality rless_wf rv-norm-positive rv-norm-mul rv-ip-mul2 rabs_wf rmul-ac rmul-zero-both rmul-distrib rmul_preserves_req rnexp-positive rleq_functionality radd-int rmul-distrib2 rmul-identity1 radd-assoc rminus-as-rmul zero-rleq-rabs radd-preserves-rleq rmul-is-positive rless_functionality rabs-positive-iff rless_transitivity1 rless_transitivity2 rless_irreflexivity rv-norm-nonneg rleq_weakening_equal rleq_weakening_rless rless_functionality_wrt_implies rv-mul-rv-sub ss-eq_functionality rless-int rdiv_wf req-iff-rsub-is-0 real_term_value_var_lemma real_term_value_add_lemma real_term_value_sub_lemma real_term_value_const_lemma itermConstant_wf itermVar_wf itermAdd_wf itermSubtract_wf real_term_polynomial radd-preserves-rless rmul-rinv3 real_term_value_mul_lemma itermMultiply_wf trivial-rless-radd rinv_wf2 real_term_value_minus_lemma itermMinus_wf rless-implies-rless rmul_preserves_rless member_rooint_lemma rv-add-cancel-left ss-eq_inversion rv-add-0 rv-mul0 rv-mul_functionality rv-mul-1-add rv-add_functionality rv-add-swap rv-add-assoc rv-0_wf rv-minus_wf rv-mul-add rv-mul-add-alt rv-mul-mul rv-mul-linear radd-rminus-both iff_weakening_equal true_wf squash_wf rmul-assoc rmul-rdiv-cancel2 rmul-one-both rminus-zero rdiv_functionality rmul-int rminus-radd rmul-minus rv-mul1 ip-between_functionality real_polynomial_null evalall-sqequal rv-add-comm rv-mul-1-add-alt rv-ip-mul rabs-of-nonneg rabs-rminus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination sqequalRule lambdaEquality productEquality natural_numberEquality applyEquality instantiate independent_isectElimination because_Cache independent_functionElimination dependent_functionElimination setEquality rename setElimination dependent_set_memberEquality equalitySymmetry equalityTransitivity levelHypothesis addLevel inrFormation addEquality minusEquality promote_hyp unionElimination voidElimination baseClosed imageMemberEquality dependent_pairFormation voidEquality isect_memberEquality intEquality int_eqEquality computeAll universeEquality imageElimination multiplyEquality sqleReflexivity mlComputation

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.
    (a  \#  b  {}\mRightarrow{}  c  \#  b  {}\mRightarrow{}  (a\_b\_c  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:\mBbbR{}.  ((t  \mmember{}  (r0,  r1))  \mwedge{}  b  \mequiv{}  t*a  +  r1  -  t*c)))



Date html generated: 2017_10_04-PM-11_57_45
Last ObjectModification: 2017_07_28-AM-08_54_31

Theory : inner!product!spaces


Home Index