Nuprl Lemma : rooint_wf
∀[l,u:ℝ].  ((l, u) ∈ Interval)
Proof
Definitions occuring in Statement : 
rooint: (l, u)
, 
interval: Interval
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
rooint: (l, u)
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
real_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairEquality, 
inlEquality, 
inrEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[l,u:\mBbbR{}].    ((l,  u)  \mmember{}  Interval)
Date html generated:
2016_05_18-AM-08_21_42
Last ObjectModification:
2015_12_27-PM-11_54_50
Theory : reals
Home
Index