Nuprl Lemma : radd-preserves-rless

x,y,z:ℝ.  (x < ⇐⇒ (z x) < (z y))


Proof




Definitions occuring in Statement :  rless: x < y radd: b real: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q uimplies: supposing a
Lemmas referenced :  rless_wf radd_wf real_wf rleq_weakening_equal radd_functionality_wrt_rless1 rminus_wf radd_functionality_wrt_rless2 int-to-real_wf rless_functionality req_inversion radd-assoc radd-ac radd_functionality radd-rminus-both req_weakening radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination dependent_functionElimination independent_functionElimination natural_numberEquality productElimination promote_hyp

Latex:
\mforall{}x,y,z:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  (z  +  x)  <  (z  +  y))



Date html generated: 2016_05_18-AM-07_06_44
Last ObjectModification: 2015_12_28-AM-00_37_25

Theory : reals


Home Index