Nuprl Lemma : radd-preserves-rless
∀x,y,z:ℝ.  (x < y 
⇐⇒ (z + x) < (z + y))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
radd: a + b
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
Lemmas referenced : 
rless_wf, 
radd_wf, 
real_wf, 
rleq_weakening_equal, 
radd_functionality_wrt_rless1, 
rminus_wf, 
radd_functionality_wrt_rless2, 
int-to-real_wf, 
rless_functionality, 
req_inversion, 
radd-assoc, 
radd-ac, 
radd_functionality, 
radd-rminus-both, 
req_weakening, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
productElimination, 
promote_hyp
Latex:
\mforall{}x,y,z:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  (z  +  x)  <  (z  +  y))
Date html generated:
2016_05_18-AM-07_06_44
Last ObjectModification:
2015_12_28-AM-00_37_25
Theory : reals
Home
Index