Nuprl Lemma : radd_functionality_wrt_rless1

x,y,z,t:ℝ.  (y < t)  ((x y) < (z t)) supposing x ≤ z


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y radd: b real: uimplies: supposing a all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False uall: [x:A]. B[x] subtype_rel: A ⊆B real: prop: iff: ⇐⇒ Q rev_implies:  Q itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q)
Lemmas referenced :  less_than'_wf rsub_wf real_wf nat_plus_wf rless-iff-rpositive radd_wf rless_wf rleq_wf rpositive-radd2 rminus_wf rpositive_functionality req_transitivity real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermMinus_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 radd_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality voidElimination extract_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination because_Cache independent_isectElimination computeAll int_eqEquality intEquality isect_memberEquality voidEquality

Latex:
\mforall{}x,y,z,t:\mBbbR{}.    (y  <  t)  {}\mRightarrow{}  ((x  +  y)  <  (z  +  t))  supposing  x  \mleq{}  z



Date html generated: 2017_10_03-AM-08_25_14
Last ObjectModification: 2017_07_28-AM-07_23_47

Theory : reals


Home Index