Nuprl Lemma : rv-Cauchy-Schwarz-equality

rv:InnerProductSpace. ∀a,b:Point(rv).  ((a ⋅ b^2 (a^2 b^2))   (∃t:ℝa ≡ t*b))


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x rv-0: 0 rnexp: x^k1 req: y rmul: b real: all: x:A. B[x] exists: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False rneq: x ≠ y or: P ∨ Q uiff: uiff(P;Q) rv-norm: ||x|| rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 top: Top exists: x:A. B[x]
Lemmas referenced :  rv-ip-positive Error :ss-sep_wf,  real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rv-0_wf req_wf rnexp_wf istype-void istype-le rv-ip_wf rmul_wf Error :ss-point_wf,  rv-norm-is-zero rv-sub_wf rv-mul_wf rdiv_wf rless_wf int-to-real_wf radd_wf rsub_wf rmul_preserves_req rminus_wf rinv_wf2 itermSubtract_wf itermMultiply_wf itermAdd_wf itermVar_wf itermConstant_wf itermMinus_wf req_functionality rv-ip-sub-squared req_weakening radd_functionality req_transitivity rv-ip-mul rmul_functionality rv-ip-mul2 rsub_functionality rmul-rinv3 rmul-rinv req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_minus_lemma radd-preserves-req req_inversion rnexp2 rsqrt_wf rv-ip-nonneg rleq_wf rleq_weakening_equal rsqrt0 rsqrt_functionality Error :ss-eq_wf,  rv-sub-is-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation voidElimination inhabitedIsType because_Cache inrFormation_alt closedConclusion minusEquality approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt dependent_pairFormation_alt

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point(rv).    ((a  \mcdot{}  b\^{}2  =  (a\^{}2  *  b\^{}2))  {}\mRightarrow{}  b  \#  0  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  a  \mequiv{}  t*b))



Date html generated: 2020_05_20-PM-01_11_53
Last ObjectModification: 2019_12_09-PM-11_41_12

Theory : inner!product!spaces


Home Index