Nuprl Lemma : rv-Cauchy-Schwarz-equality
∀rv:InnerProductSpace. ∀a,b:Point(rv).  ((a ⋅ b^2 = (a^2 * b^2)) 
⇒ b # 0 
⇒ (∃t:ℝ. a ≡ t*b))
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-0: 0
, 
rnexp: x^k1
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
rv-norm: ||x||
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
rv-ip-positive, 
Error :ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rv-0_wf, 
req_wf, 
rnexp_wf, 
istype-void, 
istype-le, 
rv-ip_wf, 
rmul_wf, 
Error :ss-point_wf, 
rv-norm-is-zero, 
rv-sub_wf, 
rv-mul_wf, 
rdiv_wf, 
rless_wf, 
int-to-real_wf, 
radd_wf, 
rsub_wf, 
rmul_preserves_req, 
rminus_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMinus_wf, 
req_functionality, 
rv-ip-sub-squared, 
req_weakening, 
radd_functionality, 
req_transitivity, 
rv-ip-mul, 
rmul_functionality, 
rv-ip-mul2, 
rsub_functionality, 
rmul-rinv3, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_minus_lemma, 
radd-preserves-req, 
req_inversion, 
rnexp2, 
rsqrt_wf, 
rv-ip-nonneg, 
rleq_wf, 
rleq_weakening_equal, 
rsqrt0, 
rsqrt_functionality, 
Error :ss-eq_wf, 
rv-sub-is-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
voidElimination, 
inhabitedIsType, 
because_Cache, 
inrFormation_alt, 
closedConclusion, 
minusEquality, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
dependent_pairFormation_alt
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point(rv).    ((a  \mcdot{}  b\^{}2  =  (a\^{}2  *  b\^{}2))  {}\mRightarrow{}  b  \#  0  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  a  \mequiv{}  t*b))
Date html generated:
2020_05_20-PM-01_11_53
Last ObjectModification:
2019_12_09-PM-11_41_12
Theory : inner!product!spaces
Home
Index