Nuprl Lemma : rv-norm-is-zero
∀[rv:InnerProductSpace]. ∀[x:Point(rv)].  uiff(||x|| = r0;x ≡ 0)
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
req: x = y
, 
int-to-real: r(n)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ss-eq: Error :ss-eq, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_wf, 
rv-norm_wf, 
int-to-real_wf, 
req_witness, 
Error :ss-eq_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rv-0_wf, 
Error :ss-point_wf, 
Error :ss-sep_wf, 
rless_irreflexivity, 
rleq_weakening, 
rv-ip_wf, 
rmul_wf, 
rleq_wf, 
real_wf, 
rless_transitivity1, 
rv-norm-positive, 
rv-norm0, 
req_functionality, 
rv-norm_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_functionElimination, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
voidElimination, 
productEquality, 
setEquality, 
lambdaEquality, 
lambdaFormation
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point(rv)].    uiff(||x||  =  r0;x  \mequiv{}  0)
Date html generated:
2020_05_20-PM-01_11_30
Last ObjectModification:
2019_12_09-PM-11_48_28
Theory : inner!product!spaces
Home
Index