Nuprl Lemma : rv-ip-sub-squared
∀[rv:InnerProductSpace]. ∀[x,y:Point(rv)].  (x - y^2 = ((x^2 - r(2) * x ⋅ y) + y^2))
Proof
Definitions occuring in Statement : 
rv-sub: x - y
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
req_witness, 
rv-ip_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
radd_wf, 
rsub_wf, 
rmul_wf, 
int-to-real_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
req_functionality, 
req_transitivity, 
rv-ip-sub, 
rsub_functionality, 
rv-ip-sub2, 
req_weakening, 
rv-ip-symmetry, 
itermSubtract_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
natural_numberEquality, 
independent_functionElimination, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point(rv)].    (x  -  y\^{}2  =  ((x\^{}2  -  r(2)  *  x  \mcdot{}  y)  +  y\^{}2))
Date html generated:
2020_05_20-PM-01_11_16
Last ObjectModification:
2019_12_09-PM-11_48_38
Theory : inner!product!spaces
Home
Index