Nuprl Lemma : rv-sub-is-zero

[rv:RealVectorSpace]. ∀[x,y:Point].  uiff(x y ≡ 0;x ≡ y)


Proof




Definitions occuring in Statement :  rv-sub: y rv-0: 0 real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] rv-sub: y rev_uimplies: rev_uimplies(P;Q) rv-minus: -x req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 ss-eq_wf rv-sub_wf rv-0_wf ss-point_wf real-vector-space_wf rv-add_functionality ss-eq_weakening rv-add-0 ss-eq_functionality rv-add_wf rv-0-add rv-add-minus rv-add-assoc ss-eq_inversion ss-eq_transitivity uiff_transitivity rv-minus_wf rv-mul_wf int-to-real_wf radd_wf itermSubtract_wf itermAdd_wf itermConstant_wf req-iff-rsub-is-0 rv-sub_functionality rv-mul-1-add rv-mul_functionality rv-mul0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis voidElimination productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination natural_numberEquality minusEquality approximateComputation intEquality voidEquality

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x,y:Point].    uiff(x  -  y  \mequiv{}  0;x  \mequiv{}  y)



Date html generated: 2017_10_04-PM-11_51_10
Last ObjectModification: 2017_07_28-AM-08_53_52

Theory : inner!product!spaces


Home Index