Nuprl Lemma : rv-0-add

[rv:RealVectorSpace]. ∀[x:Point].  0 ≡ x


Proof




Definitions occuring in Statement :  rv-add: y rv-0: 0 real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a all: x:A. B[x] prop: subtype_rel: A ⊆B false: False implies:  Q not: ¬A ss-eq: x ≡ y member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  ss-eq_weakening rv-add-comm ss-eq_functionality rv-add-0 real-vector-space_wf ss-point_wf rv-0_wf rv-add_wf real-vector-space_subtype1 ss-sep_wf
Rules used in proof :  productElimination independent_functionElimination independent_isectElimination voidElimination isect_memberEquality hypothesis applyEquality isectElimination extract_by_obid because_Cache hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x:Point].    x  +  0  \mequiv{}  x



Date html generated: 2016_11_08-AM-09_14_21
Last ObjectModification: 2016_10_31-PM-06_32_44

Theory : inner!product!spaces


Home Index