Nuprl Lemma : rsqrt0
rsqrt(r0) = r0
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
req: x = y
, 
int-to-real: r(n)
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
req_inversion, 
int-to-real_wf, 
rsqrt_wf, 
rleq_weakening_equal, 
rleq_wf, 
rmul-zero, 
rsqrt-unique
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule
Latex:
rsqrt(r0)  =  r0
Date html generated:
2016_10_26-AM-10_09_07
Last ObjectModification:
2016_10_11-PM-11_57_28
Theory : reals
Home
Index