Nuprl Lemma : rminus-zero

-(r0) r0


Proof




Definitions occuring in Statement :  req: y rminus: -(x) int-to-real: r(n) natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  req_weakening rminus_wf int-to-real_wf equal_wf squash_wf true_wf real_wf rminus-int iff_weakening_equal minus-zero
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin natural_numberEquality hypothesis independent_isectElimination applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality sqequalRule imageMemberEquality baseClosed productElimination independent_functionElimination because_Cache

Latex:
-(r0)  =  r0



Date html generated: 2017_10_02-PM-07_15_43
Last ObjectModification: 2017_07_28-AM-07_20_39

Theory : reals


Home Index