Nuprl Lemma : rminus-zero
-(r0) = r0
Proof
Definitions occuring in Statement : 
req: x = y
, 
rminus: -(x)
, 
int-to-real: r(n)
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
req_weakening, 
rminus_wf, 
int-to-real_wf, 
equal_wf, 
squash_wf, 
true_wf, 
real_wf, 
rminus-int, 
iff_weakening_equal, 
minus-zero
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
because_Cache
Latex:
-(r0)  =  r0
Date html generated:
2017_10_02-PM-07_15_43
Last ObjectModification:
2017_07_28-AM-07_20_39
Theory : reals
Home
Index