Nuprl Lemma : rv-sep-iff

rv:InnerProductSpace. ∀x,y:Point.  (x ⇐⇒ 0)


Proof




Definitions occuring in Statement :  rv-sub: y inner-product-space: InnerProductSpace rv-0: 0 ss-sep: y ss-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rv-sub: y rev_implies:  Q uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  rv-add-comm rv-add-sep2 rv-add-0 ss-sep_functionality rv-0-add rv-add-minus rv-add_functionality rv-add-assoc ss-eq_inversion ss-eq_transitivity ss-eq_functionality uiff_transitivity ss-eq_weakening rv-minus_wf rv-add_wf ss-eq_wf rv-add-sep1 ss-point_wf rv-0_wf rv-sub_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-sep_wf
Rules used in proof :  productElimination independent_functionElimination dependent_functionElimination because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x,y:Point.    (x  \#  y  \mLeftarrow{}{}\mRightarrow{}  x  -  y  \#  0)



Date html generated: 2016_11_08-AM-09_15_57
Last ObjectModification: 2016_11_02-PM-03_04_47

Theory : inner!product!spaces


Home Index