Nuprl Lemma : rv-sep-iff
∀rv:InnerProductSpace. ∀x,y:Point.  (x # y 
⇐⇒ x - y # 0)
Proof
Definitions occuring in Statement : 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
rv-sub: x - y
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rv-add-comm, 
rv-add-sep2, 
rv-add-0, 
ss-sep_functionality, 
rv-0-add, 
rv-add-minus, 
rv-add_functionality, 
rv-add-assoc, 
ss-eq_inversion, 
ss-eq_transitivity, 
ss-eq_functionality, 
uiff_transitivity, 
ss-eq_weakening, 
rv-minus_wf, 
rv-add_wf, 
ss-eq_wf, 
rv-add-sep1, 
ss-point_wf, 
rv-0_wf, 
rv-sub_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-sep_wf
Rules used in proof : 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x,y:Point.    (x  \#  y  \mLeftarrow{}{}\mRightarrow{}  x  -  y  \#  0)
Date html generated:
2016_11_08-AM-09_15_57
Last ObjectModification:
2016_11_02-PM-03_04_47
Theory : inner!product!spaces
Home
Index