Nuprl Lemma : rv-add-sep2
∀rv:RealVectorSpace. ∀x,x',y:Point.  (y + x # y + x' 
⇒ x # x')
Proof
Definitions occuring in Statement : 
rv-add: x + y
, 
real-vector-space: RealVectorSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
rv-add-sep, 
ss-sep_wf, 
real-vector-space_subtype1, 
rv-add_wf, 
ss-point_wf, 
real-vector-space_wf, 
ss-sep-irrefl
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
sqequalRule, 
because_Cache, 
unionElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}x,x',y:Point.    (y  +  x  \#  y  +  x'  {}\mRightarrow{}  x  \#  x')
Date html generated:
2017_10_04-PM-11_50_17
Last ObjectModification:
2017_08_10-PM-03_38_13
Theory : inner!product!spaces
Home
Index