Nuprl Lemma : rv-add-sep2

rv:RealVectorSpace. ∀x,x',y:Point.  (y x'  x')


Proof




Definitions occuring in Statement :  rv-add: y real-vector-space: RealVectorSpace ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B or: P ∨ Q not: ¬A false: False
Lemmas referenced :  rv-add-sep ss-sep_wf real-vector-space_subtype1 rv-add_wf ss-point_wf real-vector-space_wf ss-sep-irrefl
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination applyEquality sqequalRule because_Cache unionElimination independent_functionElimination voidElimination

Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}x,x',y:Point.    (y  +  x  \#  y  +  x'  {}\mRightarrow{}  x  \#  x')



Date html generated: 2017_10_04-PM-11_50_17
Last ObjectModification: 2017_08_10-PM-03_38_13

Theory : inner!product!spaces


Home Index