Nuprl Lemma : rv-add-sep

rv:RealVectorSpace. ∀x,x',y,y':Point.  (x x' y'  (x x' ∨ y'))


Proof




Definitions occuring in Statement :  rv-add: y real-vector-space: RealVectorSpace ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  rv-add: y or: P ∨ Q guard: {T} implies:  Q prop: so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q uall: [x:A]. B[x] btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ real-vector-space: RealVectorSpace member: t ∈ T all: x:A. B[x]
Lemmas referenced :  real-vector-space_wf rneq_wf radd_wf rmul_wf int-to-real_wf real_wf or_wf ss-sep_wf ss-eq_wf all_wf ss-point_wf subtype_rel_self
Rules used in proof :  natural_numberEquality rename setElimination equalitySymmetry equalityTransitivity hypothesisEquality functionExtensionality lambdaEquality productEquality because_Cache functionEquality setEquality isectElimination extract_by_obid tokenEquality applyEquality hypothesis cut thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution introduction lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}x,x',y,y':Point.    (x  +  y  \#  x'  +  y'  {}\mRightarrow{}  (x  \#  x'  \mvee{}  y  \#  y'))



Date html generated: 2016_11_08-AM-09_13_19
Last ObjectModification: 2016_11_02-PM-03_05_53

Theory : inner!product!spaces


Home Index