Step
*
of Lemma
ip-dist-between
∀[rv:InnerProductSpace]. ∀[a,b,c:Point]. ||a - c|| = (||a - b|| + ||b - c||) supposing a_b_c
BY
{ (Auto THEN (StableCases ⌜a # b⌝⋅ THENA Auto)) }
1
1. rv : InnerProductSpace
2. a : Point
3. b : Point
4. c : Point
5. a_b_c
6. a # b
⊢ ||a - c|| = (||a - b|| + ||b - c||)
2
1. rv : InnerProductSpace
2. a : Point
3. b : Point
4. c : Point
5. a_b_c
6. ¬a # b
⊢ ||a - c|| = (||a - b|| + ||b - c||)
Latex:
Latex:
\mforall{}[rv:InnerProductSpace]. \mforall{}[a,b,c:Point]. ||a - c|| = (||a - b|| + ||b - c||) supposing a\_b\_c
By
Latex:
(Auto THEN (StableCases \mkleeneopen{}a \# b\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index