Step
*
of Lemma
ip-inner-Pasch1
∀rv:InnerProductSpace. ∀a,b,c,p,q:Point.
(a # p
⇒ b # c
⇒ a_p_c
⇒ b_q_c
⇒ (∃x:Point
(a_x_q
∧ b_x_p
∧ (a # q
⇒ x # a)
∧ ((a # q ∧ p # c ∧ b # q)
⇒ x # q)
∧ ((b # p ∧ b # q)
⇒ x # b)
∧ ((b # p ∧ q # c)
⇒ x # p))))
BY
{ (Auto
THEN (FLemma `ip-between-sep` [-2] THENA Auto)
THEN ∀h:hyp. ((RWO "ip-between-iff2" h THENA Auto) THEN D h THEN (D h+1 THENA Auto))
THEN RepeatFor 2 (Thin (-4))
THEN ExRepD
THEN RenameVar `s' (-3)
THEN RenameVar `t' (-6)
THEN All Reduce) }
1
1. rv : InnerProductSpace
2. a : Point
3. b : Point
4. c : Point
5. p : Point
6. q : Point
7. a # p
8. b # c
9. a # c
10. t : ℝ
11. (r0 ≤ t) ∧ (t ≤ r1)
12. q ≡ t*b + r1 - t*c
13. s : ℝ
14. (r0 ≤ s) ∧ (s ≤ r1)
15. p ≡ s*a + r1 - s*c
⊢ ∃x:Point
(a_x_q
∧ b_x_p
∧ (a # q
⇒ x # a)
∧ ((a # q ∧ p # c ∧ b # q)
⇒ x # q)
∧ ((b # p ∧ b # q)
⇒ x # b)
∧ ((b # p ∧ q # c)
⇒ x # p))
Latex:
Latex:
\mforall{}rv:InnerProductSpace. \mforall{}a,b,c,p,q:Point.
(a \# p
{}\mRightarrow{} b \# c
{}\mRightarrow{} a\_p\_c
{}\mRightarrow{} b\_q\_c
{}\mRightarrow{} (\mexists{}x:Point
(a\_x\_q
\mwedge{} b\_x\_p
\mwedge{} (a \# q {}\mRightarrow{} x \# a)
\mwedge{} ((a \# q \mwedge{} p \# c \mwedge{} b \# q) {}\mRightarrow{} x \# q)
\mwedge{} ((b \# p \mwedge{} b \# q) {}\mRightarrow{} x \# b)
\mwedge{} ((b \# p \mwedge{} q \# c) {}\mRightarrow{} x \# p))))
By
Latex:
(Auto
THEN (FLemma `ip-between-sep` [-2] THENA Auto)
THEN \mforall{}h:hyp. ((RWO "ip-between-iff2" h THENA Auto) THEN D h THEN (D h+1 THENA Auto))
THEN RepeatFor 2 (Thin (-4))
THEN ExRepD
THEN RenameVar `s' (-3)
THEN RenameVar `t' (-6)
THEN All Reduce)
Home
Index