Step
*
of Lemma
proj-sep-implies
∀n:ℕ. ∀a,b:ℙ^n. (a ≠ b
⇒ (∃i,j:ℕn + 1. (a i) * (b j) ≠ (a j) * (b i)))
BY
{ (Auto
THEN (InstLemma `Cauchy-Schwarz-strict` [⌜n + 1⌝;⌜a⌝;⌜b⌝]⋅ THENA Auto)
THEN D -1
THEN Thin (-2)
THEN (D -1 THENM (RepeatFor 2 (ParallelLast) THEN BLemma `rneq-symmetry` THEN Auto))
THEN ((BLemma `Cauchy-Schwarz-non-equality` THEN Auto THEN D -1 THEN (All (RWW "real-vec-sep-iff-rneq") THENA Auto))
THENL [ParallelOp -2; ParallelLast]
)) }
1
1. n : ℕ
2. a : ℙ^n
3. b : ℙ^n
4. i : ℕn + 1
5. u(a) i ≠ u(b) i
6. ∃i:ℕn + 1. u(a) i ≠ r(-1)*u(b) i
⊢ a i ≠ (||a||/||b||)*b i
2
1. n : ℕ
2. a : ℙ^n
3. b : ℙ^n
4. ∃i:ℕn + 1. u(a) i ≠ u(b) i
5. i : ℕn + 1
6. u(a) i ≠ r(-1)*u(b) i
⊢ a i ≠ (-(||a||)/||b||)*b i
Latex:
Latex:
\mforall{}n:\mBbbN{}. \mforall{}a,b:\mBbbP{}\^{}n. (a \mneq{} b {}\mRightarrow{} (\mexists{}i,j:\mBbbN{}n + 1. (a i) * (b j) \mneq{} (a j) * (b i)))
By
Latex:
(Auto
THEN (InstLemma `Cauchy-Schwarz-strict` [\mkleeneopen{}n + 1\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN Thin (-2)
THEN (D -1 THENM (RepeatFor 2 (ParallelLast) THEN BLemma `rneq-symmetry` THEN Auto))
THEN ((BLemma `Cauchy-Schwarz-non-equality`
THEN Auto
THEN D -1
THEN (All (RWW "real-vec-sep-iff-rneq") THENA Auto))
THENL [ParallelOp -2; ParallelLast]
))
Home
Index