Nuprl Lemma : proj-sep-implies
∀n:ℕ. ∀a,b:ℙ^n.  (a ≠ b 
⇒ (∃i,j:ℕn + 1. (a i) * (b j) ≠ (a j) * (b i)))
Proof
Definitions occuring in Statement : 
proj-sep: a ≠ b
, 
real-proj: ℙ^n
, 
rneq: x ≠ y
, 
rmul: a * b
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
real-proj: ℙ^n
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
proj-sep: a ≠ b
, 
real-vec-sep: a ≠ b
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
nat_plus: ℕ+
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rneq: x ≠ y
, 
guard: {T}
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
punit: u(a)
, 
real-vec-mul: a*X
, 
uiff: uiff(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
Cauchy-Schwarz-strict, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
Cauchy-Schwarz-non-equality, 
proj-norm-positive, 
real-vec-sep-iff-rneq, 
sq_stable__less_than, 
int-to-real_wf, 
real_wf, 
real-vec-dist_wf, 
nat_plus_properties, 
punit_wf, 
real-vec-mul_wf, 
rdiv_wf, 
real-vec-norm_wf, 
rless_wf, 
rneq_wf, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
real-vec_wf, 
rminus_wf, 
rneq-symmetry, 
rmul_wf, 
exists_wf, 
int_seg_wf, 
proj-sep_wf, 
real-proj_wf, 
nat_wf, 
rmul_preserves_rneq, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
rmul-one, 
rneq_functionality, 
req_transitivity, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
itermMinus_wf, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
isectElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
productElimination, 
because_Cache, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
inrFormation, 
promote_hyp, 
addLevel, 
levelHypothesis
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  (\mexists{}i,j:\mBbbN{}n  +  1.  (a  i)  *  (b  j)  \mneq{}  (a  j)  *  (b  i)))
Date html generated:
2017_10_05-AM-00_19_14
Last ObjectModification:
2017_06_20-PM-02_13_35
Theory : inner!product!spaces
Home
Index