Nuprl Lemma : Cauchy-Schwarz-non-equality
∀n:ℕ. ∀x,y:ℝ^n.  ((r0 < ||y||) 
⇒ x ≠ (||x||/||y||)*y 
⇒ x ≠ (-(||x||)/||y||)*y 
⇒ (|x⋅y| < (||x|| * ||y||)))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
real-vec-mul: a*X
, 
real-vec: ℝ^n
, 
rdiv: (x/y)
, 
rless: x < y
, 
rabs: |x|
, 
rmul: a * b
, 
rminus: -(x)
, 
int-to-real: r(n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
real-vec-sep: a ≠ b
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
Cauchy-Schwarz-non-equality1, 
real_wf, 
real-vec-sep_wf, 
real-vec-mul_wf, 
rdiv_wf, 
rminus_wf, 
real-vec-norm_wf, 
rless_wf, 
int-to-real_wf, 
real-vec_wf, 
nat_wf, 
real-vec-sep-cases, 
real-vec-dist_wf, 
rmul_wf, 
rabs_wf, 
rsub_wf, 
rmul-is-positive, 
rneq-iff-rabs, 
rless_transitivity2, 
rleq_weakening_rless, 
rless_irreflexivity, 
rless_functionality, 
req_weakening, 
real-vec-dist-vec-mul, 
rneq_functionality, 
real-vec-norm-mul, 
rmul_preserves_req, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
itermConstant_wf, 
req_functionality, 
req_transitivity, 
rminus_functionality, 
rmul_functionality, 
rmul-rinv, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rneq-rabs, 
rmul_preserves_rneq_iff2, 
rmul-one, 
rneq-symmetry, 
equal_wf, 
length-rneq-real-vec-sep, 
rneq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
natural_numberEquality, 
unionElimination, 
applyEquality, 
productElimination, 
inlFormation, 
voidElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
promote_hyp, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.
    ((r0  <  ||y||)  {}\mRightarrow{}  x  \mneq{}  (||x||/||y||)*y  {}\mRightarrow{}  x  \mneq{}  (-(||x||)/||y||)*y  {}\mRightarrow{}  (|x\mcdot{}y|  <  (||x||  *  ||y||)))
Date html generated:
2017_10_03-AM-11_03_11
Last ObjectModification:
2017_06_20-AM-11_40_47
Theory : reals
Home
Index