Nuprl Lemma : Cauchy-Schwarz-non-equality

n:ℕ. ∀x,y:ℝ^n.  ((r0 < ||y||)  x ≠ (||x||/||y||)*y  x ≠ (-(||x||)/||y||)*y  (|x⋅y| < (||x|| ||y||)))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-norm: ||x|| dot-product: x⋅y real-vec-mul: a*X real-vec: ^n rdiv: (x/y) rless: x < y rabs: |x| rmul: b rminus: -(x) int-to-real: r(n) nat: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q real-vec-sep: a ≠ b subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q false: False uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 not: ¬A top: Top
Lemmas referenced :  Cauchy-Schwarz-non-equality1 real_wf real-vec-sep_wf real-vec-mul_wf rdiv_wf rminus_wf real-vec-norm_wf rless_wf int-to-real_wf real-vec_wf nat_wf real-vec-sep-cases real-vec-dist_wf rmul_wf rabs_wf rsub_wf rmul-is-positive rneq-iff-rabs rless_transitivity2 rleq_weakening_rless rless_irreflexivity rless_functionality req_weakening real-vec-dist-vec-mul rneq_functionality real-vec-norm-mul rmul_preserves_req rinv_wf2 itermSubtract_wf itermMultiply_wf itermMinus_wf itermVar_wf req-iff-rsub-is-0 itermConstant_wf req_functionality req_transitivity rminus_functionality rmul_functionality rmul-rinv real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma rneq-rabs rmul_preserves_rneq_iff2 rmul-one rneq-symmetry equal_wf length-rneq-real-vec-sep rneq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis isectElimination because_Cache independent_isectElimination sqequalRule inrFormation natural_numberEquality unionElimination applyEquality productElimination inlFormation voidElimination approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality promote_hyp equalityTransitivity equalitySymmetry

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.
    ((r0  <  ||y||)  {}\mRightarrow{}  x  \mneq{}  (||x||/||y||)*y  {}\mRightarrow{}  x  \mneq{}  (-(||x||)/||y||)*y  {}\mRightarrow{}  (|x\mcdot{}y|  <  (||x||  *  ||y||)))



Date html generated: 2017_10_03-AM-11_03_11
Last ObjectModification: 2017_06_20-AM-11_40_47

Theory : reals


Home Index